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a b s t r a c t

It is desirable for robots to be able to linguistically understand human actions during human–robot
interactions. Previous research has developed frameworks for encoding human full body motion into
model parameters and for classifying motion into specific categories. For full understanding, the motion
categories need to be connected to the natural language such that the robots can interpret human
motions as linguistic expressions. This paper proposes a novel framework for integrating observation
of human motion with that of natural language. This framework consists of two models; the first model
statistically learns the relations between motions and their relevant words, and the second statistically
learns sentence structures as word n-grams. Integration of these two models allows robots to generate
sentences from human motions by searching for words relevant to the motion using the first model and
then arranging these words in appropriate order using the second model. This allows making sentences
that are the most likely to be generated from the motion. The proposed framework was tested on human
full body motion measured by an optical motion capture system. In this, descriptive sentences were
manually attached to the motions, and the validity of the system was demonstrated.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Symbolization and anthropomorphism are inherent outcomes
of human intelligence. These modes of thought are intimately
connected to the human body.

Humans have invented tools, learned how to use these tools,
and lived in various environments during the process of our evo-
lution. This environmental variety requires humans to understand
many objects, actions, and events. Symbolsmay be an efficient cog-
nitive system for tackling this variety to allow humans to memo-
rize concepts (the signified) as compact forms (the signifiers), and
reuse these signifiers in new situations to not only understand con-
cepts but also transfer these concepts. According to Saussure, the
relation between the signifier and the signified is arbitrary; specif-
ically, there is no direct connection between theword and the con-
cept to which the word refers. The arbitrary nature of the relation
between the signifier and the signified contributes to the manipu-
lability of the symbolic systems that have developed into language
(Saussure, 1966).
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Humans uses gestures as one communication channel. Commu-
nication and language may depend on processing by the human
body. We can project the actions of others onto our own bodies.
More generally, we simulate actions in our body system, and esti-
mate sensations in others; this enables us to share the actions and
understand the intent. This ability extends to understanding ani-
mals, despite their differences from humans. This understanding
– anthropomorphism – may involve mirror neurons (Gallese &
Goldman, 1998; Rizzolatti, Fogassi, & Gallese, 2001).

Research on representations of human motion for humanoid
robots has been inspired by symbolization and anthropomor-
phism. Humanoid robots have a high number of degrees of
mechanical freedom, and it is difficult to manually program
their full body motions. Programming-by-demonstration and im-
itation learning (Argall, Chernova, Veloso, & Browning, 2009;
Breazeal & Scassellati, 2002) have been developed as solutions
for overcoming these difficulties. In these frameworks, motion
trajectories are encoded into model parameters. This encoding re-
lies on the assumption that spatio-temporal features of a con-
tinuous motion trajectory can be represented by one point in
parameter space, and each such point can be regarded as a sym-
bolic representation of the corresponding motion. Robots can then
memorize motions as symbolic forms.

In robotics, the symbolization of motions has become an active
area of research, drawing on theory and understanding from
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semiology, linguistics, and brain science. However, most research
does not focus on acquisition of language from motions but,
instead, on representations of human or robot motion. For a robot
to fluidly interact with humans, it needs to acquire a linguistic
representation ofmotions, understand humanmotions in the form
of language, and generate language expressions signifying the
motions. Otherwise, human partners cannot understand how the
robot interprets actions, robots partners cannot convey requests
to humans to perform specific actions. This paper proposes a
novel framework for bidirectional conversion between human
motions and descriptive sentences. This framework consists of two
modules: a statistical model for mapping between motions and
their relevant words (a motion language model) and a statistical
model representing sentence structure byword n-grams (a natural
language model). The humanoid robot interprets observation of
human behavior as sentences and generates human-like motions
from linguistic commands by integrating these two modules. We
tested our framework on captured human full body motions and
evaluated the sentences generated from the motions, varying the
complexity of the natural language models during testing.

2. Related work

Motions are characterized by spatio-temporal features, and
these features can be encoded into parameters of dynamical
systems, such as neural networks and systems of differential
equations (Ijspeert, Nakanishi, & Shaal, 2003; Okada, Tatani, &
Nakamura, 2002; Tani & Ito, 2003). One useful method is to tune
the parameters such that an attractor for the motion pattern
embedded in the dynamical system is the result. The resulting
basins of attraction in the system can be helpful to robots for
generating stable motion, even in the presence of a disturbance
from the external environment. The system can also be used
as a predictor for motion, and this function allows for motion
recognition. Statistical models have beenwidely used for encoding
motions,with a hiddenMarkovmodel (HMM) as a typical encoding
(Asfour, Gyarfas, Azad, & Dillmann, 2006; Billard, Calinon, &
Guenter, 2006; Inamura, Toshima, Tanie, & Nakamura, 2004). The
statistical parameters can be optimized such that the likelihood of
the training motion being generated by the model is maximized.
The motion can be classified by finding the model with the largest
likelihood of generating the observed motion, and the motion
trajectory can be generated according to statistical transitions of
the postures in the model. These frameworks described above
make it possible to encode continuous motion trajectories into
model parameters,which then form the symbolic representation of
themotion. Such symbolic representations act asmotion classifiers
or motion synthesizers. However, this type of representation
cannot be easily understood by humans since the motions are
signified by an indexed set of models. As an example, suppose that
the motions of ‘‘walking’’ and ‘‘running’’ are signified by models 1
and 2, respectively. The motions signified by these indices are not
human understandable. As an alternative, each motion should be
connected to another signifier that is understandable, and natural
language is a suitable choice.

Sugita et al. proposed an approach for connecting two neural
networks with bias parameters (Sugita & Tani, 2005). One network
learns sensory motor data, and the other network learns word
transitions. These twonetworks share bias parameters, andmotion
and language are both encoded according to these parameters. The
bias parameters thus combine motions with words and allow for
generating descriptive words frommotions. Ogata et al. developed
an algorithm for generating motions from word queries by using
combined neural networks. A candidate motion is generated
from the word query, and a word is then generated from that
motion. Their algorithm searches for the motion that generates

the query (Ogata, Murase, Tani, Komatani, & Okuno, 2007). We
have also proposed a statistical framework that connects motions
to their relevant words. The motions are encoded as motion
primitives (HMMs in the framework). Additionally, words are
manually assigned to motions. The translation model then learns
the mapping between the motion primitives and words. This
framework makes it possible for robots to convert motions into
descriptive words and to generate motions from word queries
(Takano, Hamano, &Nakamura, 2015; Takano&Nakamura, 2015a).
This framework handles only verbs, and we have extended the
mapping between motions onto words to handle the sentence
structure (Takano & Nakamura, 2015b), where the sentence
structure was simply represented by word bigram, the effect
of the intrinsic structure for the mapping between the motions
and the words to generation of the sentences was not evaluated
according to the score popular in the natural language community.
This paper adopts the word bigram and word trigram for the
sentence structure, varies the complexity of mapping between the
motions and words, and quantitatively evaluates the generation of
descriptive sentences from the human motions.

In computer graphics, research has been conducted into
synthesizing character motions from words. Arikan et al. assigned
word labels to motion frames in a motion database, and developed
a method for searching for smooth sequences of motions up to
the frame to which the query word is attached (Arikan, Forsyth, &
O’Brien, 2003). Rose et al. broke motions up into groups (‘‘verbs’’,
in their system) and extracted the differences among groups as
parameters (‘‘adverbs’’) (Rose, Bodenheimer, & Cohen, 1998). They
proposed a new technique for interpolating between two motions
by controlling the parameters. Their framework introduced the
new concepts of verbs and adverbs in motion space, but verbs
and adverbs have a clear link to natural language. Our framework
establishes a connection between motion categories and the
corresponding natural language sentences.

3. Connection between motions and descriptive sentences

Our framework integrates motion representations with sen-
tence structures. Human full body motion is represented by a se-
quence of configurations, such as joint angles or joint positions. The
sequences are encoded into HMMs, each ofwhich is referred to as a
‘‘motion primitive’’. The relations between motion primitives and
the corresponding words are statistically extracted as shown on
the left panel in Fig. 1, and the resultant model is referred to as the
‘‘motion language model’’. The other model in the right panel in
Fig. 1 statistically represents the transitions betweenwords in sen-
tences. This model is referred to as the ‘‘natural language model’’.
The combination of the motion language model and the natural
languagemodel enables robots to not only understand humanmo-
tions as sentences but also generate robotmotions from a sentence
command.

The motion language model consists of three layers: motion
primitives λ, latent states s, and words ω, as shown in Fig. 2.
The motion primitives can be derived by encoding motion data
such as a sequence of joint angles into an HMM, and the word is
included in the descriptive sentence for the motion. These three
components are statistically connected by the probability P(s|λ) of
the latent state s being generated by the motion primitives λ, and
the probability P(ω|s) of the word ω being generated by the latent
state s. Given the training dataset of the motion primitive λ(k) for
the kth human full body motion and sentences ω

(k)
1 , ω

(k)
2 , . . . , ω

(k)
lk

assigned to the same motion, the probabilities P(s|λ) and P(ω|s)
are optimized by maximizing the following objective function,
for which we use an expectation–maximization algorithm. Each
expectation step estimates the distribution of the latent states
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