Neural Networks 59 (2014) 16-22

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

On computational algorithms for real-valued continuous functions of

several variables

David Sprecher *

@ CrossMark

Department of Mathematics, University of California, Santa Barbara, CA 93106, United States

ARTICLE INFO

Article history:

Received 11 December 2013

Received in revised form 20 May 2014
Accepted 26 May 2014

Available online 26 June 2014

Keywords:

Algorithm

Space-filling curves

Hilbert curve

Kolmogorov superpositions

ABSTRACT

The subject of this paper is algorithms for computing superpositions of real-valued continuous functions
of several variables based on space-filling curves. The prototypes of these algorithms were based on Kol-
mogorov’s dimension-reducing superpositions (Kolmogorov, 1957). Interest in these grew significantly
with the discovery of Hecht-Nielsen that a version of Kolmogorov’'s formula has an interpretation as a
feedforward neural network (Hecht-Nielse, 1987). These superpositions were constructed with devil’s
staircase-type functions to answer a question in functional complexity, rather than become computa-
tional algorithms, and their utility as an efficient computational tool turned out to be limited by the char-
acteristics of space-filling curves that they determined. After discussing the link between the algorithms
and these curves, this paper presents two algorithms for the case of two variables: one based on space-
filling curves with worked out coding, and the Hilbert curve (Hilbert, 1891).

Superpositions

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This paper follows the research in Sprecher (2002, 2013), ex-
ploring further the link between Kolmogorov’s superpositions:

2n+1 n
fOa,.ox) =Y ®%0 Y Pi(x,). (1)
q=1 p=1
(Kolmogorov, 1957) and space-filling curves from the point of view
of computational algorithms for real-valued continuous functions.
Hilbert's name is inextricably connected with this line of research
on two counts: it was his Problem 13 out of 23 problems that he
proposed in 1900 that led to Formula (1), and nine years earlier he
was the first to construct a space-filling curve, using geometric in-
tuition (Hilbert, 1891). This guided later mathematicians, including
this author, to construct a variety of such curves.

Formula (1) was implemented as a computational algorithm
through a linear ordering of families of pairwise disjoint n-cubes of
diminishing diameters, order-coded recursively by the inner func-
tions

Y= vl (2)
p=1

* Tel.: +1 8054527014,
E-mail addresses: sprecher@math.ucsb.edu, sprecher2@me.com.

http://dx.doi.org/10.1016/j.neunet.2014.05.015
0893-6080/© 2014 Elsevier Ltd. All rights reserved.

in Formula (1). The functions 1//;,1 result from an iteration of devil’s
staircase-type functions for fixed g, and the functions (2) deter-
mine space-filling curves on which target functions f : E" — R
are computed. The implicit presence of the space-filling curves in
the implementation of Formula (1) can be seen from the following
observations.

Let us arrange the rational coordinate points (dq, ..., dnpk) €

E", dy = Y r_, 1 in order of increasing values y? = Y0 vy
(dpk) for fixed q and k. They can be connected pairwise with a ser-
pentine polygonal curve that does not intersect itself (see Fig. 5 for
an example). Generally speaking, these curves can be associated

s . . . «q into n A

with continuous mappings: & : E —> E" of the unit interval
E = [0, 1] into the n-cube E" = [0, 1]". As k — oo they con-
verge for each value of g to a space-filling curve &9. The curves are
the method by which the functions (2) store and locate grid-points,
and how neighboring points of a given point are located. The latter
is determined by their clustering properties. The curves generated
by the functions (2), and by implication the functions themselves,
are not suited for efficient implementation.

Researches have approached implementation in a number of
ways. In two recent examples, computations were carried out with
approximate methods, using cubic splines (Igelnik & Parikh, 2003;
Leni, Fougerolle, & Truchete, 2013). Issues of implementation are
also discussed in connection with algorithms derived from For-
mula (1)inBraun (2009), Braun and Griebel (2007) and Leni (2011),
among others. The applicability of Formula (1) to neural networks
(Hecht-Nielse, 1987) is discussed in Ktirkova (1991).

http://dx.doi.org/10.1016/j.neunet.2014.05.015
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2014.05.015&domain=pdf
mailto:sprecher@math.ucsb.edu
mailto:sprecher2@me.com
http://dx.doi.org/10.1016/j.neunet.2014.05.015

D. Sprecher / Neural Networks 59 (2014) 16-22 17

Consider now one of the inner functions (2), the space-filling
int

curve £9 . E 5 E" that it defines, and its parametric representa-
tion y? = ¢4(t), with components

X1 = C?(t)

=c0) (e

xn = cl(t)
These are continuous vector-valued functions, and a direct substi-

tution in the right side of (1) gives the representation

2n+1 n

fGs e xa) =Y @00) Yl(cl)),
q=1 1

p:
also expressible in the form

2n+1

fOa,..x) =Y @Towi(1). (3)
q=1

This shows the inevitable effect of the space-filling curves on the
implementation of Formula (1), since any computational difficulty
of the curves is transmitted to the computation of f. We observe
that f in these two formulas is representable as a continuous func-
tion of the single variable ¢t. Indeed, we have the following general
statement.

Theorem 1. Let = be an arbitrary space-filling curve generated with

. o . t .
a continuous (surjective) mapping & : E 2% E" whose parametric

representation y = ¢ (t) has components
x1 = c1(t)
Xy = Cz(t) tcE.

Xn = Cp(t)
Then every real-valued continuous function f : E* — R has a repre-
sentation f (X1, ..., xp) = f(c1(t), ..., cy(t)) as a continuous func-

tion of one variable in the topology of space-filling curves.

This theorem is an immediate consequence of the fact that a
composition of continuous functions is continuous. One wonders
how Hilbert might have phrased Problem 13 had he applied space-
filling curves to analysis. It needs to be noted that analytic proper-
ties that the function f (x4, . . ., x,) might possess do not transfer as
arule to f(cq(t), ..., cy(t)) and, in fact, there is an inevitable de-
scent in smoothness, because the mappings y = ¢ (t) are nowhere
differentiable. We also know that the relationship between the pa-
rameter t € E and the points (x1, ..., x;) € E" cannot be one-one,
and while every point t € E defines a unique point in E", a point in
the n-cube may have more than one pre-image.

This paper presents in the case of two variables computational
algorithms based on formulas of the form (3), with fixed inner
functions defined through a priori space-filling curves: a curve &
with a coding algorithm based on Sprecher (2013), and the Hilbert
curve, The latter is among the most studied and applied space-
filling curves, and the literature contains numerous coding and im-
plementation schemes. The algorithm developed here can utilize
any of the existing schemes, such as Chung, Huang, and Liu (2007).
With either algorithm, the curves per se are not involved in com-
putations beyond coding vertices of grid points. It is a reasonable
conjecture that the two algorithms can be extended to continuous
functions of more than 2 variables.

2. The first algorithm

This algorithm is derived from the following representation
theorem:

—

Theorem 2. There are space-filling curves £9 and continuous func-
tions £9 : E> — R determined by them, such that every real-valued
continuous function f : E*> — R has a representation

3
fx1,%) =) @90 & (x1, %) (4)
q=1
with continuous functions ®1.
The algorithm for implementing Formula (4) follows the con-
struction of a space-filling curve &' from which the other two

curves are obtained as translates. The proof of the theorem is given
in the Appendix.

2.1. Coding squares

This section provides the computational basis for the algorithm
based on Theorem 2. The coding of grid points is achieved through
the space-filling curve constructed below (see Sprecher, 2013). We
begin with families of pairwise disjoint Cartesian-product squares

k

8 71 i
(1 o) = [dl,k,dz,w gmk] Code=) oo (5)

r=1
wherei; =0,1,...,10fork = 1,andi, =0,1,...,9fork > 1.
The 121 squares for k = 1 are ordered linearly through their lower
left vertices with the coding index ny = 11iy; + i1 (see Fig. 1):

i i
s, (2o
10 10

i11=0,2,...,10

i 10 —i
s, (1 10—
10 10

i1=13,...,9

S(my) = tb1=0,1,...,10.

2.2. Configurations oy, (n;), m=1,2,...,7, r=2,3,...

The ordering scheme for values k > 1 utilizes seven configura-
tions (see Fig. 2). Configuration oq(n,) is patterned after S(n;) on
81 generic squares with coding index n; = 9iy 1 +iz.1:

s, (o B
107 107

i11=0,2,4,6,8

or(ny) = ‘ ‘ i1 =0,1,...,9
(5
107 107
i1=1,3,579
o1(n;) nr=0,1,...,80
o2t =1 1" 9.89—n,) n, =81.....89
o1(n;) n.=0,1,...,80
o300 =1 _(89—n,.9) n, =81.....89
oy (ny) n.=20,1,...,89
oan) = < (99 —n,, —1) n, =90,...,99
$ (=1,109 —n;) n, =100,...,109
oy (ny) n.=0,1,...,89
o5 =1 (99 —n, —1) n, =90.....109
os3(n;) n.=0,1,...,89
osm) =1} (=1,99—n,) n, =90,...,99
< (109 —n,,—1) n, =100,...,109
os3(n;) n.=0,1,...,89
o1 =1 (1.99-n) n =90,100.

Download English Version:

https://daneshyari.com/en/article/40394 1

Download Persian Version:

https://daneshyari.com/article/40394 1

Daneshyari.com

https://daneshyari.com/en/article/403941
https://daneshyari.com/article/403941
https://daneshyari.com

