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a b s t r a c t

This paper shows that the globally exponentially stable neural network with time-varying delay and
bounded noises may converge faster than those without noise. And the influence of noise on global
exponential stability of DNNs was analyzed quantitatively. By comparing the upper bounds of noise
intensity with coefficients of global exponential stability, we could deduce that noise is able to further
express exponential decay for DNNs. The upper bounds of noise intensity are characterized by solving
transcendental equations containing adjustable parameters. In addition, a numerical example is provided
to illustrate the theoretical result.
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1. Introduction

Neural networks (NNs) are nonlinear dynamic systems with
some resemblance to biological neural networks in the brain. The
stability of NNs depends mainly on their parametrical configura-
tion. In biological neural systems, signal transmission via synapses
is usually a noisy process influenced by random fluctuations from
the release of neurotransmitters and other disturbances (Haykin,
1994). Moreover, in the implementation of NNs, external random
disturbances and time delays of signal transmission are common
and can hardly be avoided. It is known that random disturbances
and time delays in the neuron activations may result in oscillation
or instability of NNs (Pham, Pakdaman, & Virbert, 1998). The sta-
bility properties of delayed NNs (DNNs) and stochastic NNs (SNNs)
with external random disturbances have been widely investigated
in recent years (see,e.g., Arik, 2002, Cao, Yuan, & Li, 2006, Chen,
2001, Chua & Yang, 1988, Huang, Ho, & Lam, 2005, Huang, Li, Duan,
& Starzyk, 2012, Liao & Wang, 2003, Liu & Cao, 2009, 2010, 2011,
Shen & Wang, 2007, 2008, 2012, Wang, Liu, Li, & Liu, 2006, Zeng &
Wang, 2006, Zeng, Wang, & Liao, 2005, Zhang, Wang, & Liu, 2014,
Zhu, Shen, & Chen, 2010 and the references cited therein).

It is well known that noise can be used to stabilize a given
unstable system, and it also can make a stable system even
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more stable. There is an extensive literature concerned with the
stabilization by noise, e.g., (Appleby, Mao, & Rodkina, 2008; Luo,
Zhong, Zhu, & Shen, 2014; Mao, 2005, 2007b; Zhu & Shen, 2013)
and the references therein. The pioneering work in this area is
given due to Hasminskii (1981), who stabilized an unstable system
by using two white noise sources. Several years ago, Mao, Marion,
and Renshaw (2002) showed another important fact that the
environmental noise can suppress explosions in a finite time in
population dynamics. Recently, Deng, Luo, Mao, and Peng (2008)
revealed that the noise can suppress or express exponential growth
under the linear growth condition. In Hu, Liu, Mao, and Song
(2009), Hu et al. developed the theory in Deng et al. (2008) to
cope with the muchmore general systems. In absence of the linear
growth condition or only the one-sided linear growth condition,
Wu and Hu (2009) further considered the problem of stochastic
suppression and stabilization of nonlinear differential systems. Liu
and Shen (2012) revealed that the single noise can also make
almost every path of the solution of corresponding stochastically
perturbed system grow at most polynomially.

Noises can lead to instability and they can destabilize stable
DNNs if it exceeds their limits, what is more, the instability de-
pends on the noise intensity. For a stable DNN, is there a certain
noise intensity that can make the DNN even more stable? There-
fore, it is interesting to determine the upper bounds of random
disturbances which express exponential decay for a stable DNN
without losing its global exponential stability. Although the various
stability properties of DNNs with noise have been extensively in-
vestigated by employing the Lyapunov stability theory (Arik, 2002;
Chen, 2001; Chua & Yang, 1988; Liao &Wang, 2003; Shen &Wang,
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2007, 2008), the linearmatrix inequalitymethods (Cao et al., 2006;
Huang et al., 2005;Wang et al., 2006; Xu, Lam, & Ho, 2006) and the
matrix norm theory (Faydasicok & Arik, 2012), few works inves-
tigated the issue: noise makes the DNN even more stable when it
is already stable, directly by estimating the upper bounds of noise
level from the coefficients of global exponential stability condition.

Motivated by the above discussions, we quantitatively analyze
the influence of noise on global exponential stability of DNNs. Dif-
ferent from the traditional Lyapunov stability theory and the ma-
trix norm theory, we investigate the exponential stability of DNNs
directly from the coefficients of the DNNs. In this paper, we know
that noise is able to further express exponential decay for DNNs
without losing global stability, by comparing the upper bounds of
noise intensity and coefficients of global exponential stability. The
upper bounds of noise intensity are characterized by solving tran-
scendental equations containing adjustable parameters.

2. Problem formulation

Throughout this paper, unless otherwise specified, Rn and Rn×m

denote, respectively, the n-dimensional Euclidean space and the
set of n × m real matrices. Let (Ω,F , {Ft}t≥0, P) be a complete
probability space with a filtration {Ft}t≥0 satisfying the usual
conditions (i.e. the filtration contains all P-null sets and is right
continuous). ω(t) be a scalar Brownian motion defined on the
probability space. If A is a matrix, its operator norm is denoted by
∥A∥ = sup{|Ax| : |x| = 1}, where | · | is the Euclidean norm.
Denote L2F0

([−τ̄ , 0]; Rn) as the family of all F0− measurable
C([−τ̄ , 0]; Rn) valued random variables ψ = {ψ(θ) : −τ̄ ≤

θ ≤ 0} such that sup−τ̄≤θ≤0 E|ψ(θ)|2 < ∞ where E{} stands for
the mathematical expectation operator with respect to the given
probability measure P .

Consider a DNN model

dz(t) = [−Az(t)+ Bg(z(t))+ Dg(z(t − τ(t)))+ I]dt,
z(t) = ψ(t − t0) ∈ C([t0 − τ̄ , t0]; Rn),

t0 − τ̄ ≤ t ≤ t0, (1)

where z(t) = (z1(t), . . . , zn(t))T ∈ Rn is the state vector of
the neurons, t0 ∈ R+ and ψ ∈ Rn are the initial values, A =

diag{a1, . . . , an} ∈ Rn×n, ai > 0 is the self-feedback connection
weight matrix, B = (bkl)n×n ∈ Rn×n, D = (dkl)n×n ∈ Rn×n

are connection weight matrices, τ(t) is a delay, which satisfies
τ(t) : [t0,+∞) → [0, τ̄ ], τ ′(t) ≤ µ < 1, ψ = {ψ(s) : −τ̄ ≤

s ≤ 0} ∈ C([−τ̄ , 0], Rn), τ̄ is themaximumof delay, I is neuron ex-
ternal input (bias), and g(·) ∈ Rn is a continuous bounded vector-
valued activation function which satisfying the following Lipschitz
condition; i.e.,

|g(u)− g(v)| ≤ k|u − v|, ∀u, v ∈ Rn, g(0) = 0,

where k is a known constant.
As usual, a vector z∗

= [z∗

1 , z
∗

2 , . . . , z
∗
n ]

T is said to be an equilib-
rium point of system (1) if it satisfies

Az∗
= (B + D)g(z∗)+ I

For notational convenience, we will always shift an intended equi-
librium point z∗ of system (1) to the origin by letting x = z −

z∗, f (x) = g(x + z∗) − g(z∗). It is easy to transform system (1)
into the following form:

dx(t) = [−Ax(t)+ Bf (x(t))+ Df (x(t − τ(t)))]dt,
x(t) = ψ(t − t0) ∈ C([t0 − τ̄ , t0]; Rn),

t0 − τ̄ ≤ t ≤ t0. (2)

In addition, the function f in (2) satisfies the following Lipschitz
condition and f (0) = 0:

Assumption 1. The activation function f (·) satisfies the following
Lipschitz condition; i.e.,

|f (u)− f (v)| ≤ k|u − v|, ∀u, v ∈ Rn, f (0) = 0, (3)

where k is a known constant.
DNN (2) has a unique state x(t; t0, ψ) on t ≥ t0 for any initial

value t0, ψ . Nowwe define the globally exponential stability of the
state of DNN (2).

Definition 1. The state of DNN (2) is globally exponentially stable,
if for any t0, ψ , there exist α > 0 and β > 0 such that

|x(t; t0, ψ)| ≤ α∥ψ∥ exp(−β(t − t0)), ∀t ≥ t0, (4)

where x(t; t0, ψ) is the state of the model in (2).

3. Main results

Now, the question is, for a given globally exponentially stable
DNN, how much noise intensity can the DNN endure without
impacting its stability? We consider the noise-induced DNNs
described by the Itô stochastic differential equation (SDNNs).

dy(t) = [−Ay(t)+ Bf (y(t))+ Df (y(t − τ(t)))]dt
+ σy(t)dω(t), t > t0,

y(t) = ψ(t − t0) ∈ L2F0
([t0 − τ̄ , t0]; Rn),

t0 − τ̄ ≤ t ≤ t0, (5)

where A, B,D, f are the same as in Section 2, f satisfies
Assumption 1, σ is the intensity of noise, ω(t) is a scalar Brownian
motion defined on the probability space (Ω,F , {Ft}t≥0, P).

Under Assumption 1, SDNN (5) has a unique state for any
initial value t0, ψ and the origin point is the equilibrium point.
We calculated the largest noise intensity that SDNN (5) can bear
without losing global exponential stability. Moreover, we deduce
the intensity of noise that makes the DNN (2) even more stable
when it is already stable. For SDNN (5), we give the following
definition of global exponential stability.

Definition 2 (Mao, 2007a). SDNN (5) is said to be almost surely
globally exponentially stable if for any t0 ∈ R+, ψ ∈ L2F0
([−τ̄ , 0]; Rn), there exist α > 0 and β > 0 such that ∀t ≥

t0, |y(t; t0, ψ)| ≤ α∥ψ∥ exp(−β(t − t0)) hold almost surely;
i.e., the Lyapunov exponent lim supt→∞ (ln |y(t; t0, ψ)|/t) < 0
almost surely, where y(t; t0, ψ) is the state of SDNN (5). SDNN (5)
is said to be mean square globally exponentially stable if for any
t0 ∈ R+, ψ ∈ L2F0

([−τ̄ , 0]; Rn), there exist α > 0 and β > 0
such that ∀t ≥ t0, E|y(t; t0, ψ)|2 ≤ α∥ψ∥ exp(−β(t − t0)) hold;
i.e., lim supt→∞(ln(E|y(t; t0, ψ)|2)/t) < 0, where y(t; t0, ψ) is the
state of SDNN (5).

From the above definitions, the almost surely global exponen-
tial stability and the mean square global exponential stability of
SDNN (5) are formally corresponding to each other. In fact, they do
not imply each other and additional conditions are required in or-
der to deduce one from the other. Therefore, if Assumption 1 holds,
we have the following lemma (Mao, 2007a).

Lemma 1. Let Assumption 1 hold. Then the global exponential
stability in sense of mean square of SDNN (5) implies the almost surely
exponential stability of SDNN (5).

Theorem 1. Let Assumption 1 hold and DNN (2) be globally
exponentially stable when the coefficient of global exponential
stability α <

√
2/2. SDNN (5) is mean square globally exponentially
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