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a b s t r a c t

We turn the Self-organizing Map (SOM) into an Oriented and Scalable Map (OS-Map) by generalizing the
neighborhood function and the winner selection. The homogeneous Gaussian neighborhood function is
replaced with the matrix exponential. Thus we can specify the orientation either in the map space or
in the data space. Moreover, we associate the map’s global scale with the locality of winner selection.
Our model is suited for a number of graphical applications such as texture/image synthesis, surface
parameterization, and solid texture synthesis. OS-Map ismore generic and versatile than the task-specific
algorithms for these applications. Ourwork reveals the overlooked strength of SOMs in processing images
and geometries.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Generalizing SOM

The Oriented and Scalable Map (OS-Map) is motivated by a
number of graphical applications that create a connection between
a topological structure and a data space. For instance, solid tex-
ture synthesis maps an input image (pixels in a 2D space) to voxels
(3D topology). There are intrinsic similarities between such appli-
cations and the Self-organizing Map (SOM). A closer look suggests
that the orientation and scaling of the map are critical. Thus we
turn the original SOM(Kohonen, 1982, 1998, 2013) into an oriented
and scalable map bymodifying the neighborhood function and the
winner selection. As a result, the SOM becomes a special case of
our generalizedmodel. Ourmodel highlights the SOM’s overlooked
potential in image and geometry processing. Although SOM usu-
ally maps high-dimensional data to a low-dimensional space, our
OS-Map indicates that mapping low-dimensional data to a high-
dimensional space is also promising especially in graphical appli-
cations.

The scale in OS-Map serves as a global parameter, which
specifies how many times each input item should be presented
in the resulting map. In traditional topographic maps, the scale
is implicitly fixed to one. The orientation – more precisely, the
orientation of the gradient of model vectors across the map – is a
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local feature. Our experiments indicate that local orientations have
a significant impact on the global arrangement of the map, which
is consistent with the principle of self-organization.

OS-Map inherits both the advantages and the drawbacks of
SOM. The regular grid in SOM greatly facilitates the indexing of
nodes, the learning process, and the visualization of results. The
payoff is that the fixed topology is sometimes inadequate for learn-
ing other topologies. People have been continually improving both
the structure (e.g., Fritzke, 1995, and Rauber, Merkl, & Ditten-
bach, 2002) and the learning algorithm (e.g., Bishop, Svensén, &
Williams, 1998 and Heskes, 2001) of topographic maps. Especially,
Piastra’s (2013) Self-organizing adaptive map excels at learning
surfaces from point samples, employing a growing-adapting pro-
cess. However, we find it is problematic to integrate the notions
of orientation and scale into the later models. And we commence
with the original setting of SOM because of its simple form and il-
lustrative strength.

1.2. Related applications in computer graphics

Our generalized model can perform texture synthesis, surface
quadrangulation, and solid texture construction. Despite the enor-
mous research focusing on these disparate subjects in the field of
computer graphics, the similarities between them have not been
fully exploited. This lack of attention to their related qualities is
partly attributed to the greater interest in the performance of spe-
cific algorithms than in the generality of models. Our approach
based on SOM asserts that the various applications share a com-
mon nature that can be formulated by a single model.
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Example-based texture synthesis (Wei, Lefebvre, Kwatra, &
Turk, 2009) creates new textures that resemble the texture of
interest. There have been patch-based methods (Kwatra, Schödl,
Essa, Turk, & Bobick, 2003; Liang, Liu, Xu, Guo, & Shum, 2001)
and pixel-base approaches (Efros & Leung, 1999; Kwatra, Essa,
Bobick, & Kwatra, 2005). In principle, texture synthesis creates
a mapping from the pixels in the input image to the pixels in
the synthesized image. The OS-Map can be easily configured as a
synthesized image: each node serves as a pixel and itsmodel vector
refers to a specific position in the input image. Texture synthesis
has been extended to solid texture synthesis (Dong, Lefebvre, Tong,
& Drettakis, 2008; Kopf et al., 2007) that builds a mapping from
pixels to a 3D array of voxels. We perform solid texture synthesis
simply by setting the OS-Map three-dimensional.

Surface parameterization (Hormann, Lévy, & Sheffer, 2007; Ray,
Li, Lévy, Sheffer, & Alliez, 2006; Sheffer, Praun, & Rose, 2006),
surface quadrilateral remeshing (Dong, Bremer, Garland, Pascucci,
& Hart, 2006; Peng, Barton, Jiang, & Wonka, 2014), and direction
field (Crane, Desbrun, & Schröder, 2010; Knöppel, Crane, Pinkall,
& Schröder, 2013) establish a relationship between a surface in
3D Euclidean space and a cross field (or a regular topological
grid). Topographic maps can fulfill the task by learning the points
sampled from the given surface with proper orientation control.
An epistemological difference in our approach is that it anchors the
3D surface to a regular grid, whilemost approaches from computer
graphics fit a cross field (or a grid) onto a 3D surface.

2. Oriented and scalable map

For consistency, the notations in this paper resemble Kohonen’s
(2013). OS-Map inherits the stepwise recursive algorithm from
SOM:

t: current number of iteration.
ϕ: negative constant1.
N: number of nodes of the map.
d: dimension of the data space.
A: d× d orientation matrix.
hci(t): d× d neighborhood matrix.
Initialize every model vectormi, i ∈ [0,N],mi ∈ Rd.
Initialize learning rate α(t) and neighborhood radius σ(t).
FOR T iterations

1. retrieve an input item x(t), x(t) ∈ Rd.
2. select the winner mc(t) by c = argmini ∥x(t) − mi(t)∥, i ∈
{i|s(i) < 0}.

3. update the winner and its neighbors:
FOR each node mi

mi(t + 1)← mi(t)+ hci[x(t)−mi(t)] (1)

hci(t) = α(t)exp

−

A
2σ 2(t)


(2)

4. α(t)← (1− s)minα + s maxα

σ(t)← (1− s)minσ + s maxσ

where s = exp(ϕt/T )−exp(ϕ)

1−exp(ϕ)

There are two differences between the above algorithm and the
original SOM. First, thewinner is selected from a contingent subset
rather than from all of the nodes. Such local selection directly
contributes to the scaling of the map, which will be elaborated
in Section 2.2. Second, the neighborhood function, hci(t), is
interpreted as a matrix (4) instead of a scalar. Such neighborhood

1 ϕ = −2.5 in our programs.

function allows anisotropic mapping—more precisely, adapting to
the desirable directions of the gradient of the model values across
the map.

2.1. Orientation

The term x(t) − mi(t) in the regression formula (1) is
a d-dimensional vector.2 So it is natural to view hci(t) as a
matrix (instead of a scalar in SOM), which we find beneficial for
orientation control. In cases where the input term x(t) is three-
dimensional (denoted with x, y, z as subscript), the increment is
represented by three bivariate Gaussian functions:

hci(t)[x(t)−mi(t)]

= α(t)



exp

−

cx(Px · D)2 + c ′x(P
′
x · D)2

2σ 2(t)


[x(t)−mi(t)]x

exp


−

cy(Py · D)2 + c ′y(P
′
y · D)2

2σ 2(t)


[x(t)−mi(t)]y

exp

−

cz(Pz · D)2 + c ′z(P
′
z · D)2

2σ 2(t)


[x(t)−mi(t)]z


(3)

whereD is the vector starting from thewinner c pointing to the ith
node on themap. The horizontal componentDu equals the distance
between the two nodes in the horizontal direction, likewise for
Dv in vertical direction (Fig. 1, left). Px specifies the desirable
direction of the gradient for the x-component of the currentwinner
mc . For instance, if it is required that the x-component of model
vectors varies along the vertical direction twice as fast as along
the horizontal, then one can set Px = (±1, 0) (modulo π ) and
cx/c ′x = 1/2. Formally, Px presents the first eigenvector of the
desired distribution (gradient) for the x-component of model mc .
The second eigenvector P′x is perpendicular to the first. Hence the
neighborhood function in (3) is the matrix exponential:

hci(t) = α(t) exp

− 1
2σ 2(t)

P2
xu P2

xv 2PxuPxv

P2
yu P2

yv 2PyuPyv

P2
zu P2

zv 2PzuPzv


×

 D2
u D2

v

D2
v D2

u
DuDv −DuDv

cx cy cz
c ′x c ′y c ′z


⊙ I

 . (4)

I is the identity matrix. The Hadamard product ⊙ leads to a
diagonal matrix whose exponential is again a diagonal matrix. As
illustrated in Fig. 1 and in (4), multiple heterogeneous kernels
generalize the notion of neighborhood function. When Px = Py =

Pz = (
√
1/2,
√
1/2) and cx = c ′x = cy = c ′y = cz =

c ′z = 1, formula (4) is reduced to a single homogeneous Gaussian.
Therefore, SOM is a special case of OS-Map. The orientation of
the cortical maps has been studied by Obermayer, Ritter, and
Schulten (1990) and others. However, their maps are still isotropic
with respect to each dimension of the input space (Fig. 1 left). By
contrast, ourmodel allows anisotropicmapping in each dimension
of the input x(t) respectively (Fig. 1 right).

Orientation control in learning geometric data is critical. In the
following examples (Figs. 2 and 3), SOM fails to learn the geometry,
while OS-Map catches the geometric features correctly. Local
orientations collectively contribute to the global arrangement of
the map. The input item x(t), a point in 3D Euclidean space, is
randomly and uniformly sampled from the roll/torus surface. The

2 d: the dimension of the input data space.
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