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a b s t r a c t

Taking motivation from Twin Support Vector Machine (TWSVM) formulation, Peng (2010) attempted
to propose Twin Support Vector Regression (TSVR) where the regressor is obtained via solving a pair
of quadratic programming problems (QPPs). In this paper we argue that TSVR formulation is not in the
true spirit of TWSVM. Further, taking motivation from Bi and Bennett (2003), we propose an alternative
approach to find a formulation for Twin Support Vector Regression (TWSVR) which is in the true spirit
of TWSVM. We show that our proposed TWSVR can be derived from TWSVM for an appropriately
constructed classification problem. To check the efficacy of our proposed TWSVR we compare its
performance with TSVR and classical Support Vector Regression(SVR) on various regression datasets.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The last decade has witnessed the evolution of Support Vector
Machines (SVMs) as a powerful paradigm for pattern classification
and regression (Burges, 1998; Cherkassky &Mulier, 1998; Cortes &
Vapnik, 1995). SVMs emerged from research in statistical learning
theory on how to regulate the trade-off between structural
complexity and empirical risk. The SVM classifier is also known
as ‘‘maximum margin’’ classifier as it attempts to reduce the
generalization error by maximizing the margin between two
disjoint half planes (Burges, 1998; Cherkassky & Mulier, 1998;
Cortes & Vapnik, 1995). The resultant optimization task involves
the minimization of a convex quadratic function subject to
linear inequality constraints. Support Vector Regression (SVR) is
a technique for handling regression problems which is similar in
principle to SVMs. The standard epsilon insensitive SVR model
sets an epsilon tube around data points within which errors are
discarded using an epsilon insensitive loss function.

Twin Support Vector Machine (TWSVM) (Jayadeva, Khemchan-
dani, & Chandra, 2007) is a novel binary classification technique
that determines two non parallel planes by solving two related
SVM-type problems, each of which is smaller than in a conven-
tional SVM. Recently, Peng (2010) proposed Twin Support Vec-
tor Regression (TSVR) which like TWSVM solves two quadratic
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programming problems (QPPs) to find two non-parallel regressor
planes. Apparently the main reason for this terminology seems to
be the belief that it is in the spirit of TWSVM. But we show in the
sequel that this is not the case, because the formulation of Peng
(2010) does not capture the essence of TWSVM.

In this paper, we provide a new framework of twin model to
support vector regression problem, termed as TWSVR, which is in
the true spirit to TWSVM. Unlike (Peng, 2010), our idea of twin
support vector regression is truly inspired from TWSVM (Jayadeva
et al., 2007), where the upper bound regressor(respectively lower
bound regressor) problemdealswith the proximity of points in up-
per tube(respectively lower tube) and at the same time at least
ϵ distance from the points in the lower tube(respectively upper
tube). Further, Bi and Bennett (2003) have developed an intuitive
geometric framework for support vector regression(SVR) showing
that SVR can be related to an appropriate SVM classification prob-
lem. Working on their line of work, we derive TWSVR formulation
which is in the true spirit of TWSVM for classification problem.
Thoughboth of the aforementioned formulations solve two smaller
sizedQPPs instead of solving a large one as in classical SVR, only our
proposed formulation can really be termed as Twin Support Vector
Machine Based Regressor. We differentiate between the two nota-
tions TSVR and TWSVR. TSVR refers to Peng’s formulation (Peng,
2010)whereas TWSVR refers to our proposed formulation. The ter-
minology of TWSVR seems more natural because the basic twin
classification formulation is termed as TWSVM.

The paper is organized as follows. Section 2 introduces the
notations used in the rest of the paper and briefly discusses the
formulations of Support Vector Machine and Twin Support Vector
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Machine. In Section 3, we first review Peng’s model (Peng, 2010)
and then point out reasons to conclude that formulation of Peng
(2010) is not in the true spirit of TWSVM. Section 4 discusses the
relevant result from Bi and Bennett (2003) where the equivalence
between SVR and a related SVM is presented. Taking motivation
from this equivalence of Bi and Bennett (2003), we extend the
same to twin framework which leads to our TWSVR formulation in
Section 5. In Section 6, we derive the dual formulation of TWSVR.
Section 7 compares the results of TWSVR with TSVR and SVR on
standard datasets. Section 8 provides concluding remarks.

2. Twin Support Vector Machine formulation

Let the samples to be trained be denoted by a set of m row
vectors Ai, i = 1, 2, . . . ,m in the n-dimensional real space Rn,
where the ith sample Ai = (Ai1, Ai2, . . . , Ain). Also let A =

(A1; A2; . . . ; Am) and Y = (y1; y2; . . . ; ym) denote the response
vector of training samples. For classification problem yi ∈ {1, −1}
and for regression problem yi ∈ R. Our aim is to find the
parameters w and b, where w ∈ Rn and b ∈ R, which in case
of classification problem determines a classifier of the form xTw +

b = 0 and in case of regression problem determines a regressor
function of the form f (x) = xTw + b, where x is any point in
n-dimension real space.

The Support Vector Machine(SVM) classifier is obtained by
maximizing themargin between the bounding planes xTw+b = 1
and xTw + b = −1 along with minimizing the error associated
with misclassified points with respect to bounding planes, and is
equivalent to the following problem

(SVM) Min(w, b, q) C eTq +
1
2
wTw

s.t.
Aiw + qi ≥ 1 − b for yi = 1,
Aiw − qi ≤ −1 − b for yi = −1,

qi ≥ 0, i = 1, 2, . . . ,m.

(1)

Here q = [q1, q2, . . . , qm]
T , where qi denotes the margin error

associated with the ith data sample, e is the vector of ones of
appropriate dimensions and C > 0 denotes a scalar whose
value determines the trade-off; a larger value of C emphasizes the
classification error, while a smaller one placesmore importance on
the classification margin.

In practice, rather than solving (SVM),we solve its dual problem
to get the appropriate classifier. The formulations are extended
on similar lines to handle nonlinear regression problems (Gunn,
1998).

Twin Support Vector Machine(TWSVM) (Jayadeva et al., 2007)
tends to solve two QPPs of smaller size as opposed to a single large
one in classical SVM making it almost four times faster than SVM
in respect to training times.

The TWSVM classifier is obtained by solving the following pair
of QPPs which yields two hyperplanes xTw(1)

+ b(1)
= 0 and

xTw(2)
+ b(2)

= 0

(TWSVM1) Min(w(1), b(1), q(1))

1
2
∥(Aw(1)

+ e1b(1))∥2 + C1eT2q
(1)

s.t.
−(Bw(1)

+ e2b(1)) + q(1)
≥ e2,

q(1)
≥ 0,

(2)

and,

(TWSVM2) Min(w(2), b(2), q(2))

1
2
∥(Bw(2)

+ e2b(2))∥2 + C2eT1q
(2)

s.t.
(Aw(2)

+ e1b(2)) + q(2)
≥ e1,

q(2)
≥ 0,

(3)

where C1, C2 > 0 are parameters, q(1), q(2) denotes error variables,
e1 and e2 are vectors of ones of appropriate dimensions, A and
B are set of training examples corresponding to class 1 and −1
respectively.

The algorithm finds two hyperplanes, one for each class, and
classifies points according to which hyperplane a given point is
closest to. The first term in the objective function of (TWSVM1) or
(TWSVM2) is the sum of squared distances from the hyperplane
to points of one class. Therefore, minimizing it tends to keep the
hyperplane close to points of one class (say class 1). The constraints
require the hyperplane to be at a distance of at least 1 from points
of the other class (say class −1); a set of error variables is used
to measure the error wherever the hyperplane is closer than this
minimum distance of 1. The second term of the objective function
minimizes the sum of error variables, thus attempting tominimize
mis-classification due to points belonging to class −1.

3. TSVR: Peng’s model (Peng, 2010)

The TSVR formulations (Peng, 2010) solves the following two
QPPs

(TSVR1) Min
(w(1), b(1), ξ1)

1
2
∥(Y − eϵ1 − (Aw(1)

+ eb(1)))∥2 + C1eT ξ1
s.t.

Y − eϵ1 − (Aw(1)
+ eb(1)) ≥ −ξ1,

ξ1 ≥ 0,

(4)

and,

(TSVR2) Min
(w(2), b(2), ξ2)

1
2
∥(Y + eϵ2 − (Aw(2)

+ eb(2)))∥2 + C2eT ξ2
s.t.

(Aw(2)
+ eb(2)) − (Y + eϵ2) ≥ −ξ2,

ξ2 ≥ 0,

(5)

where C1, and C2 > 0, ϵ1, and ϵ2 > 0 are parameters, ξ1, ξ2 are
slack vectors, e denotes vector of ones of appropriate dimension
and ∥.∥2 denotes the L2 norm.

Each of the above two QPP is smaller than the one obtained in
the classical SVR formulation. Also (TSVR1) finds f1(x) = xTw(1)

+

b(1) the down bound regressor and (TSVR2) finds the up bound
regressor f2(x) = xTw(2)

+ b(2). The final regressor is taken as the
mean of up and down bound regressor.

We would now like to make certain remarks on the above
formulations of TSVR. These remarks not only convince that
formulation of Peng (2010) is not in the true spirit of TWSVM but
also motivate us for our proposed formulation. In this context, we
have the following lemma

Lemma 1. For the given dataset, let f (x) be the final regressor
obtained from (TSVR1) and (TSVR2) when ϵ1 = ϵ2 = 0, and g(x)
be the final regressor obtained for any constant value of ϵ1 and ϵ2.
Then

g(x) = f (x) − (ϵ1 − ϵ2)/2.

Proof. Let (w(1), b(1)) and (w(2), b(2)) be the solutions to (TSVR1)
and (TSVR2) respectively for constant ϵ1 and ϵ2 so that g(x) =

(xTw(1)
+ xTw(2))/2 + (b(1)

+ b(2))/2. Now applying the
transformation b(1)

new = b(1)
+ ϵ1 to (TSVR1) and b(2)

new = b(2)
− ϵ2

to (TSVR2), we note that the resulting formulations have no ϵ
term in it. The final regressor obtained from these transformed
formulations will be f (x). It follows from the transformation that
(w(1), b(1)

+ ϵ1) and (w(2), b(2)
− ϵ2) will be the solutions to

transformed QPPs. Hence f (x) = (xTw(1)
+ xTw(2))/2 + (b(1)

+

b(2))/2 + (ϵ1 − ϵ2)/2, thus proving the result. �
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