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a b s t r a c t

In most sparse coding based image restoration and image classification problems, using the non-convex
ℓp-norm minimization (0rpo1) can often deliver better results than using the convex ℓ1-norm
minimization. Also, the high computational costs of ℓ1-graph in Sparse Subspace Clustering prevent
ℓ1-graph from being used in large scale high-dimensional datasets. To address these problems, we in this
paper propose an algorithm called Locality Constrained-ℓp Sparse Subspace Clustering (kNN-ℓp). The
sparse graph constructed by locality constrained ℓp-norm minimization can remove most of the
semantically unrelated links among data at lower computational cost. As a result, the discriminative
performance is improved compared with the ℓ1-graph. We also apply the k nearest neighbors to
accelerate the sparse graph construction without losing its effectiveness. To demonstrate the improved
performance of the proposed Locality Constrained-ℓp Sparse Subspace Clustering algorithm, comparative
study was performed on benchmark problems of image clustering. Thoroughly experimental studies on
real world datasets show that the Locality Constrained-ℓp Sparse Subspace Clustering algorithm can
significantly outperform other state-of-the-art methods.

& 2016 Published by Elsevier B.V.

1. Introduction

In most machine learning and computer vision problems, data
are often viewed as points lying in a union of multiple low
dimensional subspaces, in which each subspace may correspond to
one specific category or class, e.g., feature trajectories of moving
objects captured by an affine camera [1], images of several subjects
under varying illumination or under different poses [2], and local
patches or texture features of pixels/superpixels of an image [3].
Subspace clustering [4], separates data points according to their
underlying subspace, is one of the most widely used computa-
tional techniques for this kind of processing. For a given dataset
obtained from a union of subspaces, subspace clustering finds the
number of subspaces, determines the dimensionality of data,
performs segmentation of the data and evaluates the basis for each
subspace.

As performing fast online human face recognition [5], seg-
mentation of human actions from videos [6] and handwriting
types pattern recognition [7] problems become increasingly pop-
ular, various algorithms have been proposed to improve the per-
formance of subspace clustering. Most of the early studies on

subspace clustering are algebra or statistics based. Among algebra
based methods, shape interaction matrix (SIM) [8] and generalized
principal component analysis (GPCA) [9] are the two most well-
known algorithms. However, the presence of noise, degeneracy, or
partially coupled subspaces significantly affected the performance
of this type of method. The statistics based methods, including
random sample consensus (RANSAC) [10], expectation maximiza-
tion (EM) [11], and several newly developed techniques like
agglomerative lossy compression (ALC) [12], their performance are
exquisitely dependent on the estimation of exact subspace models.
Other different types of method using spectral clustering based
[13] approaches have also been proposed. In particular, sparse
representation [14] and low-rank approximation [15] based
methods for subspace clustering have received considerable
attention in recent years, nevertheless they do not require a priori
knowledge of the dimensions and the number of subspaces. The
segmentation of data is obtained by applying spectral clustering
on the similarity graph based on sparse or low-rank representa-
tion. The Sparse Subspace Clustering (SSC) algorithm [14], which is
well supported by theoretical analysis, provides state-of-the-art
results on many widely used benchmark datasets. Elhamifar et al.
[16] explored theoretical conditions to guarantee the correctness
of clustering on noiseless data. Wang et al. [17] used a local
neighborhood of each incomplete point to complete missing
values, and refine the estimated subspaces to recover the full
matrix. Soltanolkotabi et al. [18] presented a geometric function
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analysis of SSC and proved that SSC succeeds when data corrupted
by noise.

Sparse coding [19] represents a natural image as a sparse linear
combination of atoms parsimoniously chosen out of an over-
complete dictionary. Results show that natural images can be
generally coded by structural primitives (e.g., edges and line seg-
ments) that are qualitatively similar in a form to simple cell
receptive fields [20]. Intuitively, using l0-norm minimization
(l0-norm counts the number of nonzero entries in a vector) can
measure the sparsity of the representation coefficient vector. But
ℓ0-norm minimization is an NP-hard problemwhich is challenging
to solve because of the discontinuity and non-convexity of the
ℓ0-norm. Rather than solving the non-convex ℓ0-norm mini-
mization problem, one can replace ℓ0-norm with its convex
relaxation ℓ1-norm xj j1 ¼

P
xij j. The ℓ1-norm minimization, a

continuous and convex surrogate, has been proved is a good
approximation for ℓ0-norm minimization in finding the sparsest
solution with high probability [21]. In fact, ℓ1-norm minimization
has been extensively studied [19] and applied to sparse repre-
sentation applications. Although the ℓ1-norm minimization based
sparse learning formulations are able to deliver impressive results,
recent experimental results show that ℓ1-norm minimization is
suboptimal [22], because the ℓ1-norm, the closest convex
approximation of the ℓ0-norm, often leads to over-penalized
problems. In order to address this issue, non-convex ℓp-norm
((0rpo1) minimization, which interpolated between the
ℓ0-norm and the ℓ1-norm, has been proposed for better approx-
imation of the ℓ0-norm [23]. Theoretical analysis and experi-
mental results [24] suggest that the solution of ℓp-norm
minimization is close to that of the ℓ1-norm minimization and it is
sparser. Recent theoretical studies have also demonstrated the
superiority of ℓp-norm over the convex ℓ1-norm in several sparse
learning settings [25].

Other recent l1-norm minimization work include Elhamifar and
Vidal constructing a sparse similarity graph by using l1-norm
minimization based coefficients for subspace clustering, called
Sparse Subspace Clustering (SSC) [14]. Without using a fixed global
parameter to determine the size of neighborhood, SSC auto-
matically reconstructs each datum from the remaining data by
sparse coding. However, SSC solves the l1-norm minimization for
similarity graph construction but not the lp-norm minimization.
Moreover, for each new datum SSC has to perform the entire
computational procedures over the whole dataset, which is very
time-consuming and memory demanding for large-scale dataset.
This makes SSC not suitable for fast online clustering.

In this paper, we propose an effective extension of SSC, called
Locality Constrained-ℓp Sparse Subspace Clustering. Our proposed
work first uses kNN to select the k nearest neighbors of each
sample for the later sparse representation, and solves the lp-norm
minimization for similarity graph construction. We sparsely
reconstruct each sample from its k nearest neighbors in feature
space instead of using all the other samples to improve the effi-
ciency while maintaining its effectiveness. And it is worth pointing
out that our work is the first to directly employing lp-norm sparse
representation of vectors lying on a union of subspaces to cluster
the data into separate subspaces. The lp-norm minimization can
yield solutions more sparser than those of l1-norm minimization,
and furthermore, can be efficiently solved by a simple iterative
thresholding procedure. We then introduce an effective iterative
shrinkage/thresholding method [26] to solve the lp-norm mini-
mization. By searching for the best sparse representation using
kNN, our proposed algorithm can determine other points lying in
the same subspace. This is important as it allows us to build a
similarity matrix, from which segmentation of data can be sub-
sequently obtained using spectral clustering.

Our Locality Constrained-ℓp Sparse Subspace Clustering method
has the following advantages: (1) its lp-norm minimization can
remove most of the semantically-unrelated links to avoid the pro-
pagation of incorrect information than l1-norm minimization, since
each sample only has links to a small number of most probably
semantically-related samples; (2) it is naturally more effective for
discrimination since the kNN-ℓp-graph construction characterizing
the local structure can convey important information for clustering;
and (3) it is practical for large-scale applications because sparse
representation can reduce the storage requirement while the
approximate kNN-ℓp-graph construction is much more efficient than
normal sparse graph construction. In this paper, we have conducted
extensive experimental study on several real-world datasets. The
presented results demonstrate the advantages of the proposed
Locality Constrained-ℓp Sparse Subspace Clustering.

The rest of the paper is organized as follows: Section 2 provides
a brief review of SSC and lp-norm Minimization Technique. Section
3 presents the Locality Constrained-ℓp Sparse Subspace Clustering
method. Section 4 carries out the experiments to examine the
effectiveness of Locality Constrained-ℓp Sparse Subspace Cluster-
ing. Finally, Section 5 concludes this work.

2. Sparse Subspace Clustering and lp-norm Minimization
Technique

In this section, we start with a brief introduction of Sparse Sub-
space Clustering, ℓp-norm minimization sparse coding and then
introduce a newly developed ℓp-norm minimization technique.

2.1. Notations

Assume we are given a collection of N data points where m
indicates the input data dimension, denote the matrix containing
all the data points as Y ¼ ½y1;…; yN�ARm�N , where each data point
yiARm. Let fSigni ¼ 1 be an arrangement of n subspaces, we assume
data points fyig lie in a union of n linear subspaces S1 [ S2 [ :::Sn.
From the data points, we can construct a similarity graph repre-
sented as G ¼ (V, E, W). The vertices V denotes the data samples
fy1; y2; :::; yNg, and the edges E denotes the set of edges between
nodes. The similarity matrix W with Wij indicating the similarity
between node yi and node yj, N(yi) represents a set of yi's neigh-
bors in graph G, excluding yi and Ki ¼ jNi j . Given Y, the task of
subspace clustering is to cluster data points according to their
subspaces.

2.2. Sparse Subspace Clustering

Recently, researchers have utilized the inherent sparsity of
sparse representation to construct a similarity graph for various
tasks, e.g., dimension reduction [27], image analysis and other
applications [28]. Among these works, Elhamifar and Vidal pro-
posed their SSC algorithm for subspace clustering based on well-
founded recovery theory for independent subspaces and disjoint
subspaces. The motivation of SSC is that each data point xi can be
represented as a sparse linear combination of all the other data
points within the same cluster, which is to learn a sparse coeffi-
cient matrix XARN�N . Formally, SSC solves the following convex l1-
norm minimization problem:

min
X

1
2

Y�YX 2
F þλ X 1s: t: diag Xð Þ ¼ 0:

�������� ð1Þ

where diag(X) is the diagonal vector of matrix X.
The sparse matrix X has two important usages. First, for each

datum yi, its neighbors Ni can be easily inferred by the nonzero
elements in the i-th column of X. We can theoretically guarantee
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