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Using RBFs in a CMAC to prevent parameter drift in adaptive control
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a b s t r a c t

A radial Basis Function Network (RBFN) works well as a nonlinear approximator in direct adaptive
control, as long as the number of inputs is low. A Cerebellar Model Arithmetic Computer (CMAC) indexes
basis functions efficiently and can handle many inputs, but is prone to adaptive-parameter drift and
subsequent bursting. This paper proposes using overlapping RBFs inside a CMAC structure. Specifically
the RBFs associated with past and future (predicted) CMAC cells on a CMAC layer are activated along with
the currently indexed cell's RBF on that layer. The novel neural network structure achieves the com-
putational efficiency of the CMAC, yet can avoid drift when RBF widths are wide enough. Simulation
results with a pendulum compare the performance and robustness of CMAC, RBF, and the proposed
RBFCMAC in both the disturbance-free case and with sinusoidal disturbance.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Neural networks have found success in a wide variety of appli-
cations, for recent examples see [1,2]. Adaptive neural networks are
often used in filtering, with some of the latest results as follows. In
[3] an adaptive neural network filtering approach reduces electro-
cardiogram signal noise. An adaptive neural fuzzy inference system
and a functional link neural network are used to construct a filter
for removing artifacts from an electroencephalogram in [4]. An
adaptive artificial neural network model restores severely corrupted
images in [5]. Using the neural network as a universal approximator
inside an adaptive control scheme is also a well-known technique
and recent results are as follows. In [6] the control structure
includes a proportional-derivative control term in the feedback loop
and a radial-basis-function neural network in the feedforward loop
(mimicking a human motor learning control mechanism) and is
proposed for a class of uncertain Euler–Lagrange systems. An
adaptive recurrent Chebyshev neural network control system is
proposed to control a permanent magnet synchronous motor
servo-drive electric scooter with V-belt continuously variable
transmission in [7]. A nonlinear model predictive control method
using radial Basis Function Networks is proposed to guarantee the
system stability for a sampled-data nonlinear plant and compensate
for network-induced delays in [8].

In this paper, we focus on control system applications where
speed of learning/adaptation is a critical factor. Radial Basis

Function Networks (RBFNs) using Gaussian functions provide
smooth and accurate approximations of nonlinear functions and
converge much faster than backpropagation networks. Lyapunov-
stable update laws adjust the weights when RBFs are used in
direct adaptive control. However, RBFNs suffer from the “curse of
dimensionality”, in that the number of basis functions required to
achieve the same level of approximation accuracy goes up expo-
nentially with the number of inputs when the centres are placed
on a grid/lattice. For this reason, it is unlikely that an unmodified
RBF will be used in a control application when the number of
inputs is greater than three or four, due to the need to calculate all
the basis functions in real time. This severely restricts the possible
control applications of RBF networks. Various approaches invol-
ving careful placement of basis function centres (instead of on a
grid/lattice) have been proposed to try and ameliorate this pro-
blem, including [9].

On the other hand, the Cerebellar Model Arithmetic Computer
[10] (originally “Articulation Controller” but still CMAC [11]) is a
type of neural network that also converges faster than back-
propagation networks, but avoids the curse of dimensionality. Its
basis functions have hypercube domains (cells), and only the
indexed (activated) basis functions need to be calculated in real
time. A CMAC does not achieve as smooth an approximation as an
RBFN, but is not limited in the number of inputs: for a comparison
of RBFNs and CMACs see [12]. Many have proposed modifications
to the CMAC to improve training time and/or approximation
ability including [13–15]. CMAC has found success in a number of
control applications: for recent examples see [16,17].
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The main limitation of the CMAC in adaptive control appli-
cations is that it often exhibits adaptive-parameter drift (weight
drift) and bursting [18–20]. In bursting, the error at first con-
verges to a low value while the weights continue to grow in
magnitude; the weights eventually grow too large and adversely
affect the control signal, causing the error to suddenly increase.
Weight drift easily occurs when there are persistent oscillations
in the input: for example mechanical systems with underdamped
elastic degrees of freedom or any system subject to external

sinusoidal disturbances. In the CMAC, this is due to oscillations
between two (or more) cells and across the origin, where the
weight in one cell drifts to positive values and in the adjacent cell
toward negative values. Robust modifications to the training rule
that can prevent weight drift (e.g. deadzone [21] and e-
modification [22]) must be made large enough to affect perfor-
mance in the case of CMAC with input oscillations [23]. Contrast
this to RBFNs, where weight drift can be prevented in practise by
choosing the variance (the width) of the basis functions large
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Fig. 1. Single-input normalized Gaussian RBFN: Evenly spaced Gaussians (bottom graph) are normalized (middle graph) before providing the output (top graph).
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Fig. 2. Single-input spline CMAC: Three layers of cells and their normalized spline basis functions. The output is shown in the top graph.
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