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a b s t r a c t

This paper presents a fast algorithm and an accelerated toolbox1 for data visualization. The visualization
is stated as an assignment problem between data samples and the same number of given visualization
points. The mapping function is approximated by an Extreme Learning Machine, which provides an error
for a current assignment. This work presents a new mathematical formulation of the error function based
on cosine similarity. It provides a closed form equation for a change of error for exchanging assignments
between two random samples (called a swap), and an extreme speed-up over the original method even
for a very large corpus like the MNIST Handwritten Digits dataset. The method starts from random
assignment, and continues in a greedy optimization algorithm by randomly swapping pairs of samples,
keeping the swaps that reduce the error. The toolbox speed reaches a million of swaps per second, and
thousands of model updates per second for successful swaps in GPU implementation, even for very large
dataset like MNIST Handwritten Digits.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

High-dimensional data is ubiquitous in the modern world, but
it stays virtually impenetrable for human analysis, except for
images or audio. Thus data visualization [1] stays a demanded area
of research. For the exploratory data analysis of an arbitrary high
dimensional data, a suitable visualization should be created. It is
commonly restricted to two or three dimensions, which are easier
to show, but for the visualization to be useful it must be repre-
sentative of the original data.2

The naive dimensionality reduction method is variable (fea-
ture) selection, but a few selected variables could present only a
part of the data structure, if any. Other dimensionality reduction

methods optimize a selected criterion, with different criteria
resulting in two different algorithms.

Linear dimensionality reduction methods such as Principal
Components Analysis (PCA) [2] and linear Multidimensional
Scaling (MDS) [3] yield the same results, as proven in [1]. Their
criterion is variance maximization which works for datasets with
linear dependencies, but the general performance may be poor.

If the variables are relevant but correlated (which is often the
case), the dimensionality of data is higher than necessary. Then
the same data could be explained by a smaller set of transformed
variables, and is said to lie on a manifold [1]. As an example, one
can imagine a camera rotating around an object at a fixed distance,
then the pictures of that camera would lie on a 2-dimensional
manifold (sphere), while their actual dimensions would be much
higher. Many nonlinear dimensionality reduction methods,
including those listed in the next section, aim to find and unfold
such a manifold using various cost functions and training algo-
rithms. Even PCA would find a manifold in the data, if the data is
linear. Manifolds are commonly found by preserving the neigh-
borhood in original and reduced spaces. Topology-preserving
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methods that use graph distances, like Curvilinear Distance Ana-
lysis (CDA) [4,5], normally provide excellent results for un-foldable
manifolds.

In a very high dimensional space, neighborhood rank is a weak
metric [6]. This is caused by an empty space phenomenon [7] and
the curse of dimensionality, studied thoroughly in [6]. The pro-
blem comes from the change of the distribution of distances
between points in space as the dimensionality goes up. Distances
between points in a dataset are typically normally distributed.
With the increase of a space dimensionality, the mean of that
normal distribution increases whereas the variance stays the
same. It causes the distribution to concentrate around some value,
and reduces the distance differences between various ranked
neighbors, making the nearest neighbors unstable already at 10–
20 dimensions [6]. These cases require a nonlinear dimensionality
reduction method with general cost function without other
assumptions. The Extreme Learning Machine (ELM) [8,9] is a
popular [10] fast [11] version of Artificial Neural Networks that
provides a required non-linear basis for deriving such methods
[12]. It is used in ELM-based visualization methods ELMVIS [13]
and its improvement ELMVISþ is presented in this paper. They use
Mean Squared Error (MSE) or cosine distance of ELM-
reconstructed data accordingly, while the non-linearity of ELM
provides the desired nonlinear projection.

The ELMVISþ represents data visualization as an assignment
problem [14] of data samples to the same number of given
visualization points, which are fixed. An ELM model learns the de-
projection of visualization points back into the original data space,
where a cost function is calculated. The optimization task is to find
the best assignment between the two sets of samples, i.e. the best
order of data samples for a fixed order of visualization points.

An original assignment problem is a challenging NP-hard [14]
optimization task, similar to an open loop travelling salesman problem
[15]. The ELMVISþ methodology uses two improvements: a new cost
function that can be updated very fast for the position exchange of
two data samples, and a greedy optimization approach by changing
only two assignments at a time which reduces complexity toOðN2Þ. In
total, they provide a fast and useful method of data visualization onto
arbitrary fixed set of points in the visualization space. The method has
only one hyper-parameter, that is the number of neurons in the ELM
model, and the local optimum problem may be solved by multiple re-
runs of the method. The new cost function works for very high-
dimensional data.

The rest of the paper is organized as follows. Section 2 gives an
overview on the state-of-the-art. It also introduces reference
methods to the reader. Section 3 describes the ELM algorithm and
its adaptation for computation and fast update of a cost function
for visualization. Section 4 presents experimental comparison with
other methods on various datasets, while Section 5 analyses per-
formance and large datasets results. Section 6 concludes on the
work done, discusses about improvements compared to the ori-
ginal ELMVIS and directions of future research.

2. State-of-the-art

Various methods can be utilized for a data visualization task. A
common assumption in dimensionality reduction, and especially
in data visualization, is that the original data points lie on a low-
dimensional manifold. If the assumption holds, then the points of
a manifold may be mapped onto a low-dimensional visualization
space with small information loss.

The visualization methods may be divided into two major
groups, separated by whether they try to keep distances of topology
structure. Distance-preserving methods include Multidimensional
Scaling (MDS) [3], which gives the same solution as PCA; Sammon's

mapping [16]; Curvilinear Component Analysis (CCA) [17]; Isomap
[18,19]; Curvilinear Distance Analysis (CDA) [5], and Kernel PCA
[20]. Topology preserving methods are Self-Organizing Maps (SOM)
[21]; Generative Topographic mapping (GTM) [22]; Locally Linear
Embedding (LLE) [23]; Laplacian Eigenmaps [24,25], Isotop [26] and
Neighbor Retrieval Visualizer (NeRV) [27]. Out of these, the three
benchmark methods selected are PCA, SOM and NeRV.

2.1. Visualization quality measures

There are different ways to measure and compare the quality of
a visualization. The Mean Squared Error (MSE) of reconstruction
came from the dimensionality reduction, and is a universal mea-
sure of quality. However, it requires a reversed projection from
visualization to the original data space, which not all the methods
can provide. So other quality measures are often used.

One of the common measures is precision and recall of a projec-
tion. It comes from the classification task, where the definitions are

Precision¼ True Positives
True PositivesþFalse Positives

ð1Þ

Recall¼ True Positives
True PositivesþFalse Negatives

ð2Þ

The visualization task has no classes, but they are created
manually by setting all points within a certain neighborhood as
þ1 class, and the others as �1 class [28], as shown in Fig. 1. As in
visualization both precision and recall depend on the size of a
neighborhood used for their calculation, which is not the case in
classification, other similar measures are used: continuity is
similar to precision, and trustworthiness to recall [29].

Another method, called Mean Relative Rank Error (MRRE), is a
neighborhood preservation ratio. Based on the ideas from, among
others, [30–32], and refined by [1], this measure displays the
average normalized error in ranking within k nearest neighbors.
The normalization puts the measure in range between 0 and 1,
where 0 corresponds to the perfect match of the first k neighbors,
and 1 to the replacement of the first k neighbors by the most
distant k points. Depending on which space the closest k neighbors
are chosen for calculation, two MRRE's exist: MRREX-VðkÞ can be
compared to continuity, and MRREV-XðkÞ to trustworthiness.

And the last but not the least, a plot of visualized points may be
used as a measure of goodness [1]. This is especially true if data
points can be observed directly such as with images, then the user
can estimate the quality of clustering by simply browsing the
visualized data.

2.2. Principal components analysis

Principal Components Analysis (PCA) is a linear method, which
has an exact and relatively fast solution. Given the dataset X with
N samples as rows of X and d features as columns of X, PCA
decomposes the covariance matrix Cxx into eigenvectors U and
eigenvalues Λ. Eigenvalues of Λ are ranked from largest to smal-
lest, and the corresponding eigenvectors in U are placed accord-
ingly.

Cxx ¼XTX¼UTΛU ð3Þ

V¼XU:;1:k ð4Þ
where V are points in the visualization space, and U has only the
first k columns.

PCA projects data points to the dimensions of the largest variance.
Its advantages are simplicity, robustness and lack of parameters. The
main drawback of PCA is its linearity which captures a linear mani-
fold, but nonlinear manifolds would be squashed using PCA.
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