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a b s t r a c t

Typical intelligent tutoring systems rely on detailed domain-knowledge which is hard to obtain and
difficult to encode. As a data-driven alternative to explicit domain-knowledge, one can present learners
with feedback based on similar existing solutions from a set of stored examples. At the heart of such a
data-driven approach is the notion of similarity. We present a general-purpose framework to construct
structure metrics on sequential data and to adapt those metrics using machine learning techniques. We
demonstrate that metric adaptation improves the classification of wrong versus correct learner attempts
in a simulated data set from sports training, and the classification of the underlying learner strategy in a
real Java programming dataset.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Intelligent tutoring systems (ITSs) have made great strides in
recent years; they offer the promise of individual one-on-one
computer based support in the context of scarce human resources,
as it is common in massive open online courses (MOOCs), for
example [1]. However, researchers have reported 100–1000 h of
authoring time for one hour of instructions in ITSs [2]; in addition,
ITSs usually require an underlying domain theory such that their
applicability is limited in areas where problems and their solution
strategies are not easy to formalize [3,4]. In such domains, data-
driven approaches are possible, providing feedback based on a set
of existing examples for (correct) solutions of the underlying task
[4,5]: if the students require a hint on how to change her attempt
to get closer to a correct solution, it can be compared to a similar
example from the set, and the dissimilarities between her attempt
and the example can be contrasted or highlighted in order to help
the student to improve her own solution [6–8].

As key ingredients such techniques require data and a suitable
metric based on which to compare solutions. More specifically, a
suitable metric has to meet at least three requirements in order to
be suitable: (A) Solutions are typically non-vectorial. Instead, they
are given as structured data, that is, as sequences, trees or graphs.
Therefore, structure metrics have to be used that need to fit the

given domain. (B) Feedback should be given based on examples
that implement the same underlying strategy. Therefore the
metric should emphasize differences in strategy, while being
insensitive to differences in style across students. This corresponds
to the choice of the metric as well as the choice of parameters for
the metric. (C) In order to provide helpful feedback, the metric
should be interpretable, in the sense that it should be possible to
retrieve the parts of both solutions, which differ from each other.

In this contribution, we focus on alignment metrics for
sequential data: recently it has been shown that such metrics can
be expressed in terms of a general framework, called algebraic
dynamic programming (ADP) [9], which addresses the first
requirement (A). Further, we show in this work that all alignment
algorithms expressed in that framework can be systematically
adapted, as required (B). Finally, all these alignment algorithms
allow us to retrieve detailed information which parts of both input
solutions are similar and which are not: alignment algorithms
match similar parts of both solutions and identify parts which
cannot be matched, thereby providing interpretable and action-
able knowledge for feedback (requirement C), see e.g. [8].

1.1. Contribution and overview

The main contributions of this paper are the following: First, we
show that the general framework of algebraic dynamic programming
(ADP) enables us to express a broad class of structure metrics, namely
alignment distances. Exemplary, we use ADP to express four align-
ment algorithms: Global sequence alignment, affine sequence align-
ment, dynamic time warping and the Sakoe–Chiba approximation of
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dynamic time warping. Second, we demonstrate that gradients on
alignment distances can be calculated efficiently using ADP. Third, we
use the calculated gradients for structure metric learning: We adapt
metric parameters to improve the classification accuracy of a relational
generalized learning vector quantization (RGLVQ) classifier. Finally, we
apply the structure metric learning scheme using four different
alignment algorithms on two different datasets from the domain of
intelligent tutoring systems.

Note that the techniques presented in this work are by no
means limited to intelligent tutoring systems but can be applied in
all settings, where metrics on sequential data are required and
should be adapted to optimize some (differentiable) cost function
(see e.g. [10] for an example from the biomedical domain).

The outline of this paper is as follows: In Section 2 we discuss
related work, in particular data-driven intelligent tutoring systems
(ITSs), similarity-based machine learning, structure metrics and
structure metric learning. We also discuss our choice of datasets in
the context of existing literature on ITSs. In Section 3, we introduce
a simplified version of ADP as generalization of alignment algo-
rithms and use it to express four example metrics, which we
evaluate in the experiments later on. We explain metric learning
on ADP alignment algorithms using RGLVQ in Section 4. Finally, we
report our experiments in Section 5.

2. Related work

This research connects several, seemingly disconnected fields,
such as artificial intelligence in education, educational data
mining, classic machine learning, structure metrics, metric learn-
ing and formal languages. In this section, we provide an overview
of these different connections and also embed our own work in
the context of the existing literature.

2.1. Data-driven intelligent tutoring systems

Intelligent tutoring systems (ITSs) are systems to enhance
student learning via artificial intelligence methods. Most of the
time, students proceed through a curriculum of different tasks to
obtain skills and knowledge. The systems job is to select the next
task depending on the current level of knowledge and individual
parameters of the student (outer loop) and to support her solving
the current task (inner loop) [4]. Such systems have been suc-
cessfully applied in many contexts, especially in learning logic and
math concepts, and have been proven to lead to positive learning
outcomes for students [11,5].

However, they usually rely on extensive knowledge engineer-
ing to formalize domain concepts and explicitly track student
knowledge, which is both costly and difficult, especially in
domains where explicit and detailed knowledge about the domain
cannot be obtained (so-called ill-defined domains) [2–4]. To relieve
ITS engineers from the burden of knowledge engineering, data-
driven approaches have emerged. Such approaches try to replace
pre-defined and explicit domain knowledge by inference based on
example-data of students interacting with the system [4,5].

Here, we focus on the inner loop mentioned before: To support
students in solving a task, utilizing only example solution attempts
handed in by other students. An intuitive solution to this problem
is to base student support on a notion of similarity to existing
solutions: we can approximate a student model by considering the
similarity of her solution to all solutions in the example set. A hint
to improve her solution can be based on the difference between
her solution and a similar (but better) solution [6–8].

Further, a proper similarity measure enables ITS engineers to
apply machine learning techniques for further problems: one can
try to detect outliers or buggy solutions, one can estimate the

quality of solutions based on the known quality for some examples
(regression) and one can cluster or classify solutions into discrete,
meaningful sets. In our experiments we focus on the latter and
distinguish between correct and wrong executions of a sports
exercise (see Section 5.1) and between the underlying algorithms
of computer programs (see Section 5.2).

Such an approach requires a proper similarity measure (that is
a metric) as key ingredient. Note that most common similarity
measures, such as the Euclidean distance or the radial basis
function kernel, are based on a vectorial data representation.
While first approaches exist to transform student data into a
vectorial format, most data is still only available as structured data,
such as sequences, trees or graphs [12]. Thus, we face a three-fold
challenge: constructing a similarity measure that works on the
available data in the first place, adjusting this similarity measure
to be apt for the task at hand and utilizing the similarity measure
to generate actionable knowledge for an ITS. The latter is the
general topic of similarity-based machine learning, the former two
refer to structure metrics and (structure) metric learning.

2.2. Similarity-based machine learning

From early on, machine learning methods based on similarity
measures have been utilized, starting with simple schemes like k-
nearest neighbor classification [13] or k-means clustering [14]. The
general rationale is that data which are similar to each other in
some respect may be similar in other respects as well. Research on
similarity-based machine learning has flourished in recent years,
mainly driven by the development of powerful kernel-approaches,
and includes such popular methods such as the Support Vector
Machine, extended nearest neighbor-schemes and Gaussian pro-
cess regression [15,16].

Here, we require a method which lends itself to gradient-based
optimization. Gradient-based schemes in similarity-based machine
learning have been applied successfully in the case of relational
learning vector quantization (RGLVQ) [17], which we describe in
more detail in Section 4.

Note, however, that the focus of this work is not so much on
demonstrating the capabilities of methods based on an existing
similarity measure (here, the interested reader is referred to the
literature cited above), but rather how to obtain a proper (struc-
ture) similarity measure in the first place.

2.3. Structure metrics

Over the years, multiple structure metrics have been suggested,
reaching from sequential data over trees to graphs, see e.g. [18] for a
recent review. Kernel-approaches have been especially popular, such
as the diffusion or convolution kernel approach [19,20]. Unfortu-
nately, most of these approaches cannot directly deal with rich data
attached to the graph nodes and/or are runtime-inefficient.

In this contribution, we focus on sequential data, where we can
rely on the abundant work on edit or alignment distances. Such
methods extend both input sequences, such that similar elements
are aligned. They have been successfully applied in diverse
domains, such as automatic spell-checking [21,22], bioinformatics
[23–25] and speech processing [26]. All of those alignment dis-
tances can be efficiently calculated using dynamic programming
with a worst-case runtime of OðM � NÞ, with M and N being the
number of sequence elements in the first and the second input
sequence respectively.

Given the abundance of alignment algorithms in the literature,
we can select a suitable one for our data: for motion data, dynamic
time warping is a well established technique [26], accompanied
even by techniques to make it a linear-time algorithm [27]. For
comparing syntactic building blocks, however, classic edit distance
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