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a b s t r a c t

The paper is concerned with the exponential convergence for a class of non-autonomous cellular neural
networks with multi-proportional delays. By employing the differential inequality techniques, we
establish a novel result to ensure that all solutions of the addressed system converge exponentially to
zero vector. Our results complement with some recent ones. Moreover, an illustrative example and its
numerical simulation are given to demonstrate the effectiveness of the obtained results.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the dynamical behaviors of delayed cellular
neural networks (DCNNs) have been receiving much attention due
to their potential applications in associated memory, parallel
computing, pattern recognition, signal processing and optimiza-
tion problems (see [1–6]). In particular, to control the networks
running time according to the network allowed delays, the pro-
portional delay is one of the many objective-existent delay types
such as the proportional delay usually is required in web quality of
service routing decision [7]. Moreover, the systems with propor-
tional delays have been used to model various problems in biology,
economy, control, electrodynamics, and so on. To name a few, we
refer the readers to [8–12] and the references cited therein.

As is well known, since the exponential convergent rate can be
unveiled, there have been extensive results on the problem of the
exponential convergence of delayed neural networks models in the
literature. We refer the reader to [13–18] and the references cited
therein. Furthermore, by means of the transformation yðtÞ ¼ xðetÞ,
the exponential stability of the cellular neural networks (CNNs)
systems with the proportional delays have been extensively and
intensively studied in [19–23]. Consequently, the authors in [19–23]
obtain that exponential convergence of y(t). Clearly, as pointed out

in Remark 3 of [11], when yðtÞ ¼ e� t , then xðtÞ ¼ xðeln tÞ ¼ yðln tÞ ¼ 1
t .

This implies that xðtÞ ¼ yðlntÞ ¼ e� lnt is the different exponential
convergence from the case that xðtÞ ¼Oðe� tÞ.

On the other hand, during the past few years, by introducing a
new dynamical system with unbounded time-varying delays, the
authors in [24–26] obtained a lot of important and interesting
results on stability of CNNs with constant leakage coefficients.
Meanwhile, many scholars in [19–23] have paid much attention to
the convergence on CNNs under the condition that the leakage
term coefficient function is not oscillating. Most recently, as
pointed out in [16–18], CNNs with oscillating leakage term coef-
ficients has more realistic significance. It is worth mentioning that,
computing the upper right derivative of the Lyapunov function is
key proof method for convergence of CNNs in [19–23], which is
invalid for CNNs with oscillating leakage term coefficients. This
motivates us to further study the exponential convergence of
CNNs with oscillating leakage term coefficients and involving the
proportional delays.

In this paper, without assuming that the leakage term coeffi-
cient function is not oscillating, we consider the following class of
non-autonomous CNNs with multi-proportional delays:
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where n corresponds to the number of units in a neural network,
xi(t) corresponds to the state vector of the ith unit at the time t,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2016.01.046
0925-2312/& 2016 Elsevier B.V. All rights reserved.

☆This work was supported the Natural Scientific Research of Zhejiang Provincial
of China (grant no. LY12A01018), and the Construction Program of the Key Dis-
cipline in Hunan University of Arts and Science-Applied Mathematics.

n Tel./fax: þ8607367186113.
E-mail address: liubw007@aliyun.com

Neurocomputing 191 (2016) 352–355

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2016.01.046
http://dx.doi.org/10.1016/j.neucom.2016.01.046
http://dx.doi.org/10.1016/j.neucom.2016.01.046
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.01.046&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.01.046&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.01.046&domain=pdf
mailto:liubw007@aliyun.com
http://dx.doi.org/10.1016/j.neucom.2016.01.046


ciðtÞ represents the rate with which the ith unit will reset its
potential to the resting state in isolation when disconnected from
the network and external inputs at the time t; aij(t) and bijðtÞ
denote the strengths of connectivity between the cells j and i at
time t and qijt, respectively; f ið�Þ and gið�Þ denote the nonlinear
continuous activation functions; IiðtÞ denotes the external inputs at
time t; qij; i; jA J ¼ f1;2;…;ng are proportional delay factors and
satisfy 0oqijr1, and qijt ¼ t�ð1�qijÞt, in which τijðtÞ ¼ ð1�qijÞt is
the transmission delay function, and ð1�qijÞt-þ1 as qija1,
t-þ1; φiðsÞ denotes the initial value of xiðsÞ at sA ½ρi; 1�,
ρi ¼ min

1r jrn
fqijg, and φiACð½ρi; 1�;RÞ.

For convenience, we denote by RnðR¼R1Þ the set of all
n-dimensional real vectors (real numbers). For any x¼ ðx1; x2;⋯;
xnÞT ARn, we let jxj denote the absolute-value vector given by
jxj ¼ ðjx1 j ; jx2;…; jxn j ÞT , and define JxJ ¼max

iA J
j xi j . Throughout

this paper, it will be assumed that ci; Ii; aij; bij : R-R are bounded
and continuous functions, where i; jA J.

We also make the following assumptions which will be
used later.

ðH0Þ for each iA J, there exist positive constants cni and K such
that

e�
R t

s
ciðuÞdurKe�ðt� sÞcni ; for all t; sAR and t�sZ0:

ðH1Þ there exist nonnegative constants Lfj and Lgj such that

j f jðuÞjrLfj juj ; jgjðuÞjrLgj juj ; for all uAR; jA J:

ðH2Þ for each iA J, there exist positive constants ξ1; ξ2;…; ξn and
λ0 such that

sup
tZ1

f�cni þKFiðtÞgo0 and IiðtÞ ¼ Oðe�λ0tÞ as t-þ1;

where

FiðtÞ ¼ ξ�1
i
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j ¼ 1
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i
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j ¼ 1

jbijðtÞj Lgj ξjeλ0ð1�qijÞt :

2. Global exponential convergence

Theorem 2.1. Let ðH0Þ, ðH1Þ and ðH2Þ hold. Then, for every solution x
(t) of system (1.1), there exists a positive constant λ such that

xiðtÞ ¼ Oðe�λtÞ as t-þ1; iA J:

Proof. Suppose that xðtÞ ¼ ðx1ðtÞ; x2ðtÞ;…; xnðtÞÞT is an arbitrary
solution of (1.1) associated with initial value φ¼ ðφ1;φ2;…;φnÞT
satisfying the second equation of (1.1).

Let

yðtÞ ¼ ðy1ðtÞ; y2ðtÞ;…; ynðtÞÞT ¼ ðξ�1
1 x1ðtÞ; ξ�1

2 x2ðtÞ;…; ξ�1
n xnðtÞÞT :
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Define a continuous function ΓiðωÞ by setting

ΓiðωÞ ¼ sup
tZ1

fω�cni þK½FiðtÞþω�g; where ωA ½0; λ0�; iA J:

Then, from ðH2Þ, we have

Γið0Þ ¼ sup
tZ1

f�cni þKFiðtÞgo0; iA J;

which, together with the continuity of ΓiðωÞ, implies that we can
choose a constant λA ð0;minfλ0;min

iA J
cni gÞ such that
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;

¼ sup
tZ1

fλ�cni þK½FiðtÞþλ�go0; iA J: ð2:3Þ

Let

JφJξ ¼ max
1r irn

ξ�1
i max

tA ½ρi ; 1�
jφiðtÞj

� �
: ð2:4Þ

For any ε40, we obtain

jyiðtÞjo ðJφJξþεÞe�λðt�1ÞoMðJφJξþεÞe�λðt�1Þ for all tA ½ρi; 1�;

and

JyðtÞJo ðJφJξþεÞe�λðt�1ÞoMðJφJξþεÞe�λðt�1Þ

for all tA max
1r irn

ρi; 1
� �

;

where M4Kþ1 is a sufficiently large constant such that

jξ�1
i IiðtÞjoλMðJφJξþεÞe�λðt�1Þ for all tZ1; iA J: ð2:5Þ

In the following, we will show

JyðtÞJoMðJφJξþεÞe�λðt�1Þ for all t41: ð2:6Þ

Otherwise, there must exist iAf1;2;…;ng and θ41 such that

JyðθÞJ ¼ jyiðθÞj ¼MðJφJξþεÞe�λðθ�1Þ; ð2:7Þ

and

jyjðtÞjoMðJφJξþεÞe�λðt�1Þ for all tA ½ρj;θÞ; jA J: ð2:8Þ

Note that
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i
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j ¼ 1

bijðsÞgjðxjðqijsÞÞ

þξ�1
i IiðsÞ; sA ½1; t�; tA ½1;θ�: ð2:9Þ

Multiplying both sides of (2.9) by e
R s

1
ciðuÞdu, and integrating it on

½1; t�, we get
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1
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3
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Thus, with the help of (2.3), (2.5) and (2.8), we have
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