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The paper is concerned with the exponential convergence for a class of non-autonomous cellular neural
networks with multi-proportional delays. By employing the differential inequality techniques, we
establish a novel result to ensure that all solutions of the addressed system converge exponentially to
zero vector. Our results complement with some recent ones. Moreover, an illustrative example and its
numerical simulation are given to demonstrate the effectiveness of the obtained results.
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1. Introduction

In recent years, the dynamical behaviors of delayed cellular
neural networks (DCNNs) have been receiving much attention due
to their potential applications in associated memory, parallel
computing, pattern recognition, signal processing and optimiza-
tion problems (see [1-6]). In particular, to control the networks
running time according to the network allowed delays, the pro-
portional delay is one of the many objective-existent delay types
such as the proportional delay usually is required in web quality of
service routing decision [7]. Moreover, the systems with propor-
tional delays have been used to model various problems in biology,
economy, control, electrodynamics, and so on. To name a few, we
refer the readers to [8-12] and the references cited therein.

As is well known, since the exponential convergent rate can be
unveiled, there have been extensive results on the problem of the
exponential convergence of delayed neural networks models in the
literature. We refer the reader to [13-18] and the references cited
therein. Furthermore, by means of the transformation y(t) = x(e"),
the exponential stability of the cellular neural networks (CNNs)
systems with the proportional delays have been extensively and
intensively studied in [19-23]. Consequently, the authors in [19-23]
obtain that exponential convergence of y(t). Clearly, as pointed out
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in Remark 3 of [11], when y(t) = e ¢, then x(t) = x(e™ ) = y(In t) = 1.
This implies that x(t)=y(nt)=e~'" is the different exponential
convergence from the case that x(t) = O(e¢).

On the other hand, during the past few years, by introducing a
new dynamical system with unbounded time-varying delays, the
authors in [24-26] obtained a lot of important and interesting
results on stability of CNNs with constant leakage coefficients.
Meanwhile, many scholars in [19-23] have paid much attention to
the convergence on CNNs under the condition that the leakage
term coefficient function is not oscillating. Most recently, as
pointed out in [16-18], CNNs with oscillating leakage term coef-
ficients has more realistic significance. It is worth mentioning that,
computing the upper right derivative of the Lyapunov function is
key proof method for convergence of CNNs in [19-23], which is
invalid for CNNs with oscillating leakage term coefficients. This
motivates us to further study the exponential convergence of
CNNs with oscillating leakage term coefficients and involving the
proportional delays.

In this paper, without assuming that the leakage term coeffi-
cient function is not oscillating, we consider the following class of
non-autonomous CNNs with multi-proportional delays:

Xi(t) = —ci(OX(O+ > _ai(Of;x(0)+ > _by(gxi(qzt) +1i(t), t=1,

=1 i=1
Xi(S)=@i(s).selp;, 11, i=12,...n
(1.1)

where n corresponds to the number of units in a neural network,
x;(t) corresponds to the state vector of the ith unit at the time ¢,
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ci(t) represents the rate with which the ith unit will reset its
potential to the resting state in isolation when disconnected from
the network and external inputs at the time t; ay(t) and by(t)
denote the strengths of connectivity between the cells j and i at
time t and gyt, respectively; f;(-) and g;(-) denote the nonlinear
continuous activation functions; I;(t) denotes the external inputs at
time t; qy,i,jeJ={1,2,...,n} are proportional delay factors and
satisfy 0 < ¢;; < 1, and gyt =t — (1 —qy)t, in which 7;i(t) = (1 —gy)t is
the transmission delay function, and (1—gy)t—+4o00 as q;#1,
t— +o0; @;(s) denotes the initial value of x;(s) at se[p;, 1],
pi=_min {g}, and @; € C([p;, 11, R).
1<j<n

For convenience, we denote by RR=R') the set of all
n-dimensional real vectors (real numbers). For any x = (X1, Xo, -,
x)T e R", we let |x| denote the absolute-value vector given by
[X] =(1X11, X2, ..., |%:])7, and define x| =r1r_1:ljx|x,-\. Throughout
this paper, it will be assumed that ¢;, I;, a;, by : R— R are bounded
and continuous functions, where i, je].

We also make the following assumptions which will be
used later.

(Hp) for each i €], there exist positive constants ¢} and K such
that

t
e~ Jo awdu Ke 9% forallt,seR and t—s>0.
(Hy) there exist nonnegative constants L]f and Lf such that
Ifiw)l st|u\, |giw| <Lflu|, forallueR, je].

(H>) for each i e ], there exist positive constants &, &,, ...,&, and
Ao such that

sup{—ci+KFi(t)} <0 and Ii(t)=0(e %) as t— + oo,
t>1
where

F =&Y lag®)IL&+E" D by L& ek~

j=1 j=1

2. Global exponential convergence

Theorem 2.1. Let (Hy), (Hq) and (H,) hold. Then, for every solution x
(t) of system (1.1), there exists a positive constant A such that

xi()=0(~*) as t—+oo, ie].
Proof. Suppose that x(t)= (x1(t),X(t), ..., Xz(t))T is an arbitrary
solution of (1.1) associated with initial value ¢ = (¢;,@,. ....,)"
satisfying the second equation of (1.1).

Let

YO = Y1, Y2, - YuO) = (&7 %10, &5 "%0(0), .. & xn(0)T.
Then
Yi) =~y +& ! > ai(Of x(O)+& > by(t)g;(xi(qyt))
i=1 j=1
+& ), e 2.1)

Define a continuous function /';(w) by setting
I'i(w) =sup{w—c; +K[Fi(t)+w]}, where we[0, Ao], ie].
t>1

Then, from (H;), we have

I'i(0)=sup{—cf+KF;(t)} <0, ie],
t>1

which, together with the continuity of I'j(w), implies that we can
choose a constant A e (0, min{/q, mijncj.‘}) such that
le

[i(A) = sup{A—ct + K[Fi(t)+ A]} < 0, (2.2)
t>1

and
n n
fug{i—CHK {5,-1 SlaodE+EY |bij(t)|L§§jeﬂ<‘%)f+/1] }
> =1 j=1

n n
< sup{x’t—c?—»—l( {gi‘ SlaoIdE+&7Y |b1j(t)L§§je%<‘q‘f>‘+/1} }
j=1 j=1

t>1
=sup{A—cf+K[Fi(t)+4]} <0, ie]. 2.3)
t>1
Let
-1
lglle= ggn{fi tg[lp?(]]lcv,-(t)l } (2.4

For any & > 0, we obtain

YO <(l@lle+e)e =D <M(llplls+e)e*=D forall te[p;, 1],
and

Iy <(lglg+e)e =D <M(llgl +e)e =D

forall te [ max pj, 1},
l<i<n

where M > K+1 is a sufficiently large constant such that

1E7 0] <AM(l@ls+e)e =D forall t>1,ie]. (2.5)
In the following, we will show

Iy <M(l@lg+e)e* =D forall t> 1. (2.6)

Otherwise, there must exist ie {1,2,...,n} and 8 > 1 such that

Iy@) I = 1y,(0)] =M(llgll ¢ +e)e =D, 2.7

and

Y01 <M(l@ll+e)e=* =D forall tep;.0), je. 2.8)
Note that

YOOV =& Y aOfXiN+& " Y bii(5)gxi(qys)

j=1 j=1
+& is), se[l, t], te[l,0] (2.9

Multiplying both sides of (2.9) by eliawdn 4 integrating it on
[1, t], we get

ot ot ot n
yilH = yi(De~ ey /1 e J {éil S ay(s)f(5)

j=1
+& 1 by<s)gj(xj<qgs>)+5i11,»(5)} ds, te[l, O]
j=1

Thus, with the help of (2.3), (2.5) and (2.8), we have

Y0 =

0 0 0 n
yi(])e—L c,v(u)du_’_/1 e—fs ci(uydu |i§i1 Zaij(s)fj(xj(s))

i=1

+&13° bij(S)gj(xj(q.-,-S))+§i]If(S)} ds

i=1

ETVY T a(o)fjxs)

-0
s(\|¢\|5+e)1<e*¢“9*1>+/ Ke= =<
1 =1
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