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a b s t r a c t

This paper investigates the leader-following consensus problem for multi-agent systems with Markovian
switching topologies in a sampled-data setting. We study two algorithms corresponding to the case
where the leader's state is time varying or time invariant. With a time-varying leader's state, we present
necessary and sufficient conditions for boundedness of the tracking error systems. With a time-invariant
leader's state, we present necessary and sufficient conditions for mean-square stability of the tracking
error systems. An optimization algorithm is given to derive the allowable control gains or the feasible
sampling period. Simulation examples are presented to show the usefulness of the results.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Leader-following consensus has received significant attention
in the control field in recent years. This is mainly due to its wide
applications in engineering, such as unmanned air vehicles, mobile
robotic swarms, wireless sensor networks and cooperative sur-
veillance [1–5]. The main idea of leader-following consensus is
that the leader sends its state information to the followers directly
or indirectly such that the tracking errors between leader and all
followers are as small as possible. There are many publications on
the topic of the leader-following consensus problem [6–8]. In [6],
the multi-agent system considered was with measurement noises
and directed interconnection topology. A sufficient condition for
mean-square stability of the closed loop tracking control system
was obtained by designing distributed estimators. In [7], both
leaderless and leader-following consensus problems were studied.
The stability or boundedness conditions were presented based on
Lyapunov theorems and Nyquist stability criterion. By using the
sampled-data control approach, the leader-following consensus
for multi-agent systems was studied in [8]. The topology consid-
ered is deterministic.

Data-sampled approach is frequently used to discretize the
continuous-time system in control community. In recent years this
method is also used to study the multi-agent systems [8–12]. Two
sampled-data coordination algorithms for double-integrator dyna-
mics were studied in [10] where the interaction topology is fixed undi-
rected/directed. In [11], the consensus problem of double-integrator

multi-agent systems with both fixed and switching topologies was
studied. The switching signal is arbitrary and only a sufficient condition
is derived to solve a consensus problem in this case. In [12], the authors
researched the stochastic bounded consensus tracking problems of
multi-agent systems, where the sampling delay induced by the sam-
pling process was considered.

The topologies in the above literature are all deterministic or
switching in a deterministic framework. However, the system
models are sometimes switching stochastically due to the internal
or/and external disturbance. Similar to some other control sys-
tems, the Markovian switching model has been used to describe
the interaction topology among the agents in very recent years
[13,16]. In [13], the static stabilization problem of a decentralized
discrete-time single-integrator network with Markovian switching
topologies was studied. In [14], the authors considered the con-
sensus for a network of single-integrator agents with Markovian
switching topologies. In [15], the authors studied the mean-square
consentability problem for a network of double-integrator agents
with Markovian switching topologies. In [16], the authors studied
the distributed discrete-time coordinated tracking problem for
multi-agent systems with Markovian switching topologies in case
of the transition probabilities are equal.

Motivated by the former considerations, we will extend the
leader-following consensus problem in [8] to the case of Marko-
vian switching topologies in this paper. In this case, the leader-
following consensus problem will become more challenging. Both
time-invariant and time-varying leader are considered. Based on
algebra graph theory and Markovian jump system theory, we
present the necessary and sufficient conditions for the conver-
gence of the tracking error systems. An optimization algorithm
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will be given to derive the allowable control gains and sampling
period.

Notation: Let R and N represent, respectively, the real number
set and the non-negative integer set. Denote the spectral radius of
the matrix M by ρðMÞ. Suppose that A;BARp�p. Let A≽B (respec-
tively, AgB) denote that A�B is symmetric positive semi-definite
(respectively, symmetric positive definite). Denote the determi-
nant of the matrix A by JAJ . Given XðkÞARp, define JXðkÞJ
E9 JE½XðkÞXT ðkÞ�J2, where E½�� is the mathematical expectation.
“�” represents the Kronecker product of matrices. In denotes the
n� n identity matrix. Let 1n and 0m�n denote, respectively, the n�
1 column vector with all components equal to 1 and m� n zero
matrix.

2. Preliminaries and problem formulation

2.1. Graph theory notions

Denote the directed graph by G¼ ðV; E;AÞ, where V and E
represent, respectively, the node set and the edge set. Suppose that
there exist n followers and one leader label as agents 1 to n, and agent
r, respectively. Suppose G with order n be the interaction topology
among the n followers. A¼ ½aij�ARn�n is the adjacency matrix
associated with G. Here aij40 if agent i can obtain information from
agent j and aij ¼ 0 otherwise. We assume that aii ¼ 0. Let G ¼ ðV ; E ;AÞ
be a directed graph of order nþ1 used to model the interaction
topology among the n followers and one leader. The definitions of V , E ,
and A are similar to that of V; E;A. The (nonsymmetric) Laplacian
matrix L¼ ½Lij�ARn�n associated with A is defined as lii ¼

P
ja iaij and

lij ¼ �aij, where ia j. The diagonal matrix B¼ diagfb1;…; bng denotes
the leader adjacency matrix associated with graph G , where bi40 if
the ith follower can obtain the information from leader and bi ¼ 0
otherwise. Here we assume that the leader does not receive informa-
tion from the followers, which implies that arj ¼ 0; j¼ 1;…;n.

In this paper, we suppose that the interaction topologies are
Markovian switching. Let θ½k� be a homogeneous, finite-state,
discrete-time Markov chain which takes values in a finite set
S9f1;…;mg with probability transition matrixΠ. We assume that
the Markov process is ergodic throughout this paper. Denote the
switching topology set by bG9fG1;…;Gmg.

2.2. Problem formulation

Suppose the dynamics of the ith follower is given by

_ξiðtÞ ¼ uiðtÞ; i¼ 1;…;n ð1Þ
where ξiðtÞAR and uiðtÞAR represent the position and the
velocity, respectively. The leader's state considered is time-vary-
ing, which can be described as follows:

_ξrðtÞ ¼ vrðtÞ
_vrðtÞ ¼ aðtÞ ¼ arðtÞþδðtÞ

(
ð2Þ

where ξrðtÞAR and vrðtÞAR; aðtÞAR are, respectively, the position,
the velocity and the acceleration of the leader. The assumptions of
ar(t) and δðtÞ are as the same as that in [17], that is, ar(t) is known
and δðtÞ is unknown but bounded with a given upper bound δ (i.e.
δðtÞ
�� ��rδ). It is assumed that only a subset of the followers can
obtain the position of the leader, while cannot obtain the velocity
and the acceleration of the leader. Hence, we employ the observer-
type algorithm proposed in [17] as

uiðtÞ ¼ �α
X

jANiðθðtÞÞ
aθijðtÞðξiðtÞ�ξjðtÞÞþbθi ðtÞðξiðtÞ�ξrðtÞÞ

24 35
þviðtÞ; α40 ð3Þ

_viðtÞ ¼ arðtÞ�γα
X

jANiðθðtÞÞ
aθijðtÞðξiðtÞ�ξjðtÞÞþbθi ðtÞðξiðtÞ�ξrðtÞÞ

24 35;
γ40; i¼ 1;…;n: ð4Þ
Here, vi(t) in (3) is the estimated velocity of the leader obtained by
the ith follower rather than the real velocity of the ith follower.

Using the direct discretization method in [18] to (2), we get
that

ξr ½kþ1� ¼ ξr ½k�þTvr ½k�þ
T2

2
a½k� ð5Þ

vr ½kþ1� ¼ vr ½k�þTa½k� ð6Þ
where the definitions of ξr½k�, vr ½k� and a½k� are similar to that of
continuous-time case, and T is the sampling period.

The discretized dynamics of (1) is

ξi½kþ1� ¼ ξi½k�þTui½k�: ð7Þ
According to (3)–(7), the data-sampled algorithm for the ith
follower is given as follows:

ui½k� ¼ �α
X

jANiðθ½k�Þ
aθij ½k�ðξi½k��ξj½k�Þþbθ½k�i ðξi½k��ξr ½k�Þ

24 35
þT
2
âθ½k�i ½k�þvi½k�; ð8Þ

vi½kþ1� ¼ vi½k�þTâθ½k�i ½k�; ð9Þ
where ξi½k�AR is the position of the ith follower at time t¼kT,
α40, γ40 are the control gains to be determined, and

âθ½k�i ½k� ¼ ar ½k��αγ
X

jANiðθ½k�Þ
aθ½k�ij ðξi½k��ξj½k�Þþbθ½k�i ðξi½k��ξr ½k�Þ

24 35:
By denoting ξ½k�9 ½ξ1½k�;…; ξn½k��T , v½k�9 ½v1½k�;…; vn½k��T , we can
obtain the equation of the whole system as follows:

ξ½kþ1� ¼ ξ½k��αTðLθ½k� þBθ½k�Þξ½k�þαTBθ½k�ξr½k� � 1nþTv½k�

�T2

2
αγðLθ½k� þBθ½k�Þξ½k�þT2

2
αγBθ½k�ξr ½k� � 1nþ

T2

2
ar ½k� � 1n; ð10Þ

v½kþ1� ¼ v½k��αγTðLθ½k� þBθ½k�Þξ½k�þTαr ½k� � 1nþαγTBθ½k�ξr ½k� � 1n: ð11Þ
Also, by denoting ξ½k�9ξ½k��ξr ½k� � 1n and v½k�9v½k��vr ½k� � 1n, we
obtain that the error dynamics of (10) and (11) are as follows:

ζ½kþ1� ¼ Cθ½k�ζ½k�þW ½k�δ½k� ð12Þ
where

ζ½k� ¼ ξ½k�
v½k�

" #
; Cθ½k� ¼

In�ðαTþ1
2αγT

2ÞHθ½k� TIn

�αγTHθ½k� In

24 35;
W ¼ �T2

2 � 1n

�T � 1n

" #
; Hθ½k� ¼ Lθ½k� þBθ½k�;

Lθ½k� is the (nonsymmetrical) Laplacian matrix associated with the

adjacency matrix Aθ½k� and hence Gθ½k�, Bθ½k� is the leader adjacency

matrix associated with graph Gθ½k�
. It follows from [20] that

fζ½k�; kANg is not a Markov process, but the joint process fζ½k�;θ½k�g
is. The initial state of the joint process is denoted by fζ0;θ0g.

Remark 1. The algorithms in (3) and (4) can be found in [17],
where the continuous-time tracking control problem was consid-
ered. In [8], the algorithms in (3) and (4) were discretized by data-
sampled approach and the leader-following consensus problem
was studied in the case where the topology is fixed. In this paper,
we will extend the results in [8] to the case where the topologies
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