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a b s t r a c t

In level set methods, the re-initialization remedy is widely applied to periodically replace the degraded
level set function (LSF) with a signed distance function to maintain its regularity. Due to its various
limitation, the energy functional regularization based methods using variational technique (e.g. distance,
Gaussian, and reaction–diffusion based regularization methods) are recently introduced to replace this
remedy. However, the relationship among them seems to be less investigated. In this paper, an enhanced
distance regularized level set evolution (DRLSE-E) completely free of the re-initialization procedure is
proposed based on analyzing these recent regularization models. DRLSE-E has an intrinsic capability
of maintaining LSF's regularity, particularly the desirable signed distance property in a vicinity of the
zero level set and the flat property out of this vicinity, which ensures accurate computation and stable
level set evolution. Like other re-initialization free methods, DRLSE-E has simple and efficient numerical
scheme in implementation, flexible initialization. Furthermore, DRLSE-E has the advantage of faster
evolving speed and more numerical accuracy than distance regularized methods because of its forward
and backward diffusion rate considering two competing components during the evolution. As an
application example, DRLSE-E is used to typical edge-based and region-based active contour models for
image segmentation and shows its competitiveness. Considering DRLSE-E is general, it can be easily
incorporated into various existing level set models for image segmentation, filtering, and other tasks.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the last 20 years, active contour models (ACMs, snakes or
deformable models) [1,2] have received extensive attention in the
fields of image processing and computer vision, especially for image
segmentation [3–5]. These methods all need to initialize a closed
curve in the image and then evolve it until the evolving curve
converges to the target [6,7]. According to the representation of the
evolving curve, ACM can be roughly divided into parametric ACM
[1,8] and geometric ACM [9]. The parametric ACM uses parametric
equation to explicitly represent the evolving curve. The explicit
representation easily brings some intrinsic drawbacks, such as
difficulty in handling topological changes, limitation in capture
range of concave boundaries, and dependency of parameterizations.

On the contrary, the geometric ACM implicitly represents the
curves as the zero level set (LS) of a higher dimensional function,

called LS function (LSF), and formulates the evolution of the curves
through the evolution of LSF. The curve is evolved using the partial
differential equation (PDE) derived from the energy function that
describes a curve smoothing process. When the curve evolution stops,
the zero LS corresponds to the segmentation result. The geometric
ACM using the LS evolution (LSE) can naturally represent contour of
complex topology and deal with topological changes (contour break-
ing and merging) without any extra functions by controlling the
evolution of LSF rather than the parametric curves. Thus it significantly
improves ACM by being free of the drawbacks in parametric ACM.
Moreover, extensive numerical algorithms based on Hamilton–Jacobi
equations have been developed, accurately handling shocks and
providing stable numerical schemas [9,10]. These merits make LS
methods a popular numerical technique for trackingmoving interfaces
or segmenting objects in image processing, computer vision, computer
graphics, computational geometry, fluid mechanics, material sciences,
etc. [11–15].

In LS evolution methods for image segmentation, the LSF is
commonly defined by computing the closest distances between
pixels and a given closed curve in an image domain. To obtain
a clear zero LS as the boundary, the points that have positive
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distances are inside the curve, and ones that have negative
distances are outside the curve. Although the initial front would
work for any function negative inside and positive outside, the
signed distance function (SDF) gives many desirable properties
[16]. Specifically, the SDF ϕ in a metric space ðX; dÞ is defined by

ϕ¼
�dðx; ∂SÞ if xAS�

0 if xA∂S
dðx; ∂SÞ if xASþ

8><
>: ð1Þ

where dðx; SÞ ¼ infyASdðx; yÞ denotes the distance of a given point x
to the boundary of S. If SDRn with piecewise smooth boundary,
the SDF is differentiable almost everywhere, and its gradient
satisfies the Eikonal equation j∇ϕj ¼ 1. This property close relates
to the unit normal vector, the mean curvature, the closest point on
the boundary, and the simplified volume and surface integrals on
the domain. Therefore, the LSF is usually forced to be a SDF,
especially in the evolving stage. However, during the iterative
cycles of evolution, the size of the gradient of the SDF may become
too small at certain points, that is, the property of SDF does not
hold, which may cause numerical instabilities and even errors
during computation. It is necessary to re-initialize the LS function
as a SDF again to remedy this degeneracy or irregularities. In
conventional LS methods, re-initialization is performed by peri-
odically stopping the evolution and reshaping the degraded LSF as
a SDF [17–19,10]. However, the use of re-initialization introduces
some fundamental problems yet to be practically solved, such as
no general answers to when and how to apply the re-initialization
[20,21]. Re-initialization is often applied in an ad hoc manner, and
it should be avoided as much as possible [18,22].

To reduce or eliminate the re-initialization step, the global
minimization methods [23,24] are introduced to incorporate into
some variational LSF via the specific form based total variation
approach, such as Chan–Vese model [25] and Vese–Chan's piecewise
smoothing model [26]. The convex object function in these methods
is helpful for keeping the LSF's regularity during the evolution. From
another aspect, the constrained diffusion-based LSE [27] is proposed
to deal with the initialization dependency problem that commonly
appears in edge-based approaches. The diffusion rate in this method
changes smoothly from 0 to 1 and makes LSF tend to flat. By
extending the radial basis functions (RBF) based LSE, a region based
ACM not requiring any initialization [28,29] is further proposed. In
this method, the LSF is interpolated using RBFs. Its shape and
topology are determined by the coefficients of RBF interpolation.
So, the finite difference based numerical methods to evolve the LSF
are replaced by the adaptive changes of the RBF interpolation
coefficients. The regularization of LSF is intrinsically handled through
velocity normalization and the smoothing nature of RBF interpola-
tion, and the periodic re-conditioning can be eliminated via RBF
coefficient updating. Besides these methods, an efficient non-convex
minimization algorithm [30] is proposed for distance preserving LS
methods. This method overcomes the main numerical limitations by
introducing constrained L1 optimization techniques via splitting this
non-convex problem into sub-optimizations, and then combining
them together using an augmented Lagrangian approach [31].

Recently, the variational LSE is introduced to eliminate the
costly re-initialization procedure by incorporating a penalty term
into the energy functional [32]. This method has received sig-
nificant attentions because it repairs the critical but bottleneck-
like disagreement between theory and implementation in LSE.
Unfortunately, this penalty term may cause an undesirable side
effect on the LSF in some circumstances, which may affect the
numerical accuracy. To address this, an improved variational LS
formulation [22] is further developed by incorporating a distance
regularization term into the energy functional, and completely
avoiding the undesirable side effect arisen from the penalty term.

It is theoretically graceful and practically advisable for the inves-
tigation on a new double-well potential related to the distance
regularization term to maintain a desired shape of the LSF.

Besides this, a Gaussian filter is recently proposed to regularize
the LSF to achieve local segmentation and did not employ the re-
initialization in numerical implementation [33]. In this method,
the evolution of a function with its Laplacian derivation is
equivalent to Gaussian filtering the initial condition of the func-
tion, so this method can be called as Gaussian regularized LS
evolution (GRLSE). This regularization approach has received
remarkable attentions because it is very fast, exact in segmenting
clean objects, efficient in numerical implementation, and capable
of adaptively selecting local or global segmentation. However, the
energy functional in the penalty term is not explicitly presented,
and the stability of the curves under the proposed LS formulation
is not thoroughly investigated. More recently, a novel reaction–
diffusion (RD) method [34] for implicit active contours is further
presented, which is free of the costly re-initialization. The RD
equation in phase transition modeling is based on the Van der
Waals–Cahn–Hilliard theory in mechanics for stability analysis of
systems with unstable components, and the RD term is intro-
duced into penalty to derive a piecewise constant solution.
Accordingly, this method performs well on weak boundary anti-
leakage and noisy image. However, this method evolves slower
than GRLSE.

We focus our topic on the regularization based variational LSE
free of re-initialization. Although the four methods are advisable
in image segmentation applications, there are some interesting
questions among them. First, what is the intrinsic relationship
among the distance regularized methods and the Gaussian reg-
ularized ones? Since they all are proposed independently in recent
years, it seems that their relationship and their characteristic are
less investigated. Second, in experiments it is found that the GRLSE
method performs well for less iteration number but when the
iteration number increases, it cannot segment the object anymore,
what is reason for this? Third, the forward and backward diffusion
is interesting in distance regularized methods, can the diffusion
rate be further improved?

Motivated by these questions, in this paper, we proposed a
new variational LSE, namely DRLSE-E, with an enhanced distance
regularization energy term that drives the motion of the zero level
contours toward desired locations. In our method, to maintain a
desired shape of the LSF, particularly the desirable signed distance
property in a vicinity of the zero LS and the flat property out at this
vicinity, a new distance regularization term is defined to force the
gradient magnitude of the LSF to one of its minimum points. It
ensures accurate computation and stable LS evolution. The LSE is
derived as a gradient flow that minimizes a double-well energy
functional for the distance regularization term, which derives a
forward-and-backward diffusion to maintain the regularity of LSF.
Besides re-initialization-free property, the internal energy func-
tional of DRLSE-E explicitly emphasizes the competition of signed
distance preserving component and flat component for small
gradient magnitude, while accelerates the gradient descent velocity
for large gradient magnitude in different LSs, which makes DRLSE-E
very simple and fast in numerical implementation. To validate
DRLSE-E, we apply it to edge-based and region-based ACM for
image segmentation, and compared them to some related methods.
The experimental results on synthetic and real-world images
demonstrate the advantage of DRLSE-E, e.g., implementation with
a simpler and more efficient numerical scheme than conventional
LSE, and relatively large time steps and computation time, while
ensuring competitive numerical accuracy and efficiency.

The rest of this paper is organized as follows. In Section 2, we
introduce some related works. In Section 3, we propose a new
variational LSE with an enhanced distance regularization term.
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