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a b s t r a c t

In this paper, an integral sliding mode control (SMC) approach is presented to investigate the projective
synchronization of nonidentical chaotic neural networks with mixed time delays. By considering a
proper sliding surface and constructing Lyapunov–Krasovskii functional, as well as using the linear
matrix inequality (LMI) technique, a sliding mode controller is designed to achieve the projective
synchronization of the different neural networks. Finally, numerical simulations are carried out to
illustrate the effectiveness of the main results.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Over the past few years, neural networks have attracted much
attention due to the background of a wide range of application
such as associative memory, pattern recognition, image processing
and model identification [1–6]. As we know, there exist time
delays in the information processing of neurons due to various
reasons. The existence of time delays may lead to some complex
dynamic behaviors such as oscillation, divergence, chaos,
instability, or other poor performance of the neural networks
[3–11].

Since Pecora and Carroll introduced a method to realize the
synchronization of two identical chaotic systems with different
initial conditions [12], the synchronization of chaotic systems
has attracted considerable attention [13]. There are several types
of synchronization which have been found in interesting chaotic
systems, such as antiphase synchronization [14], generalized
synchronization [15], anticipatory synchronization [16], lag syn-
chronization [17]. A projective synchronization phenomenon
was first reported and discovered by Gonzalez-Miranda [18].
In 1999, Mainieri and Rehacek declared that the two identical
systems could be synchronized up to a scaling factor α [19].

Subsequently, some researchers extended the concept of projec-
tive synchronization and termed it as generalized projective
synchronization [20–22].

Most of the previous works (see, e.g., [14–16,23–28]) on the
projective synchronization of chaotic delayed neural networks
always assume that the drive and the response systems have
identical dynamic structure [14–16] and the same parameters
[25,26]. But in many practical situations, the drive and the
response systems are different. Therefore, it is interesting to study
different neural networks with mixed time delays both in theory
and in applications.

Motivated by the above discussions, this paper investigates the
projective synchronization problem of different chaotic neural
networks with both the discrete and distributed time delays.
To overcome the difficulty that complete synchronization between
nonidentical chaotic neural networks cannot be achieved
only by utilizing output feedback control, the sliding mode control
approach is presented. To guarantee that the response system
can be projectively synchronized with the drive system,
the integral sliding mode control approach is presented, as well
as Lyapunov–Krasovskii functional and the linear matrix inequality
are used. Furthermore, numerical simulations are carried out to
illustrate the effectiveness of the main results.

Throughout this paper, Rn and Rn�n denote the n-dimensional
Euclidean space and the set of all n�n real matrices, respectively.
The superscript T denotes matrix transposition and I denotes the
identity matrix. P40 means that is a real symmetric positive
definite matrix. n represents the elements below the main diag-
onal of a symmetric matrix.
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2. Problem description

In this paper, we consider the delayed neural network model
defined by the following equations:

_xðtÞ ¼ �C1xðtÞþA1f 1ðxðtÞÞþB1f 2ðxðt�τ1ÞÞþD1

Z t

t�τ2
f 3ðxðsÞÞ dsþ J1

ð1Þ

where xiðtÞ ¼ ðx1ðtÞ; x2ðtÞ;…; xnðtÞÞT ARn is an n-dimensional state
vector of the neural networks; C1 ¼ diagðc11; c12;…; c1nÞ is the state

feedback coefficient matrix; A1 ¼ ða1ijÞn�n, B1 ¼ ðb1ijÞn�n and D1 ¼
ðd1ijÞn�n are, respectively, the connection weight matrix, the dis-
cretely delayed connection weight matrix and distributive delayed
connection weight matrix. J1 is an external input vector;
τiZ0 ði¼ 1;2Þ is a transmission delay; f iðxðtÞÞ ¼ ðf i1xðtÞ;
f i2ðxðtÞÞ;…; f inðxðtÞÞT ði¼ 1;2;3Þ denote the neuron activation func-
tions. The initial conditions of (1) are given by xiðtÞ ¼ μiðtÞA
Cð½�τmax;0�;RÞ, where Cð½�τmax;0�;RÞ denotes the set of all con-
tinuous functions from ½�τmax;0� to R. Here τmax ¼max fτ1; τ2g.

Let the neural network (1) be the drive system. The response
system is given as

_yðtÞ ¼�C2yðtÞþA2g1ðyðtÞÞþB2g2ðyðt�τ1ÞÞ

þD2

Z t

t�τ2
g3ðyðsÞÞ dsþuðtÞþ J2; ð2Þ

where yðtÞARn is the state vector of the response system,
giðxðtÞÞ ði¼ 1;2;3Þ denotes the neuron activation function and u
(t) is the control input to be designed.

Throughout this paper, we assume that there exist positive
constants F1i; F2i; F3i40, i¼ 1;2;…;n such that the activation
function f i satisfies the following conditions:

0r f 1iðuiÞ�f 1iðviÞ
ui�vi

rF1i; 0r f 2iðuiÞ�f 2iðviÞ
ui�vi

rF2i;

0r f 3iðuiÞ�f 3iðviÞ
ui�vi

rF3i ð3Þ

where ui; viAR.
To prove the main result, Lemma 1 is presented.

Lemma 1 (Gu et al. [29]). For any positive definite matrix DARn�n,
a scalar ρ40, vector function ω : ½0;ρ�-Rn such that the integration
concerned is well defined, thenZ ρ

0
ωðxÞ ds

� �T

D
Z ρ

0
ωðxÞ ds

� �
rρ

Z ρ

0
ωðxÞDωðxÞ ds:

Definition 1. The projective synchronization error between sys-
tems (1) and (2) is defined as eðtÞ ¼ yðtÞ�αxðtÞ, where αa0 is
called a scaling factor.

The objective of this study is to propose an approach to design
a suitable controller u(t) such that

lim
t-1

:eðtÞ:¼ lim
t-1

:yðtÞ�αxðtÞ:¼ 0; ð4Þ

where : � : denotes the Euclidean norm of a vector. If Eq. (4) is
satisfied, then we can say that systems (1) and (2) have obtained
projective synchronization. According to the Definition 1, the error
system can be obtained from (1) and (2) as follows:

_eðtÞ ¼�C2eðtÞþA2Φ1ðeðtÞÞþB2Φ2ðeðt�τ1ÞÞ

þD2

Z t

t�τ2
Φ3ðeðsÞÞ dsþuðtÞþðJ2�αJ1Þ

þα½A2g1ðxðtÞÞ�A1f 1ðxðtÞÞ�þαðC1�C2ÞxðtÞ
þα½B2g2ðxðt�τ1ÞÞ�B1f 2ðxðt�τ1ÞÞ�

þα D2

Z t

t�τ2
g3ðxðsÞÞ ds�D1

Z t

t�τ2
f 3ðxðsÞÞ ds

� �
ð5Þ

where ΦiðeðtÞÞ ¼ giðyðtÞÞ�αgiðxðtÞÞ; i¼ 1;2;3.

3. Projective synchronization based on sliding mode control

3.1. Sliding surface and equivalent control law design

It can be seen clearly from (5) that the dynamic behavior of the
error system depends on both error state e(t) and chaotic state x(t)
of the drive system (1). Therefore, projective synchronization
between different chaotic neural networks (1) and (2) cannot be
achieved only by utilizing output feedback control. To overcome
the difficulty, an integral sliding mode control approach will be
proposed to overcome this difficulty and realize it.

Sliding mode control, as an effective robust control strategy,
has been successfully applied to a wide variety of complex systems
and engineering, including uncertain systems, time-delay systems,
stochastic systems, singular systems and Markovian jump systems
[30–32]. Using the sliding mode control method to synchronize
drive-response chaotic systems involves two major stages:
(1) selection of an appropriate switching surface for the desired
sliding motion; (2) design of a sliding mode control law that brings
any orbit in phase space to the switching surface and then
achieves the synchronization of drive-response chaotic systems
even in the presence of parameter and disturbance uncertainties.

For the sliding mode controller design in this paper, an
appropriate switching surface with integral operation is designed
such that the sliding motion on the manifold has the desired
properties. The sliding mode controller is constructed as

SðtÞ ¼ eðtÞþ
Z t

0
K½zðsÞ�αK1xðsÞ�αK2xðs�τ1Þ�αK3xðs�τ2Þ� ds

�
Z t

0
½�C2eðsÞþA2Φ1ðeðsÞÞþB2Φ2ðeðs�τ1ÞÞ� ds

�D2

Z t

0

Z s

s�τ2
Φ3ðeðξÞÞ dξ ds ð6Þ

where KARn�n is a gain matrix to be designed; K1;K2;K3ARn�n

are known constant matrices, zðtÞ ¼ K1yðtÞþK2yðt�τ1ÞþK3yðt�τ2Þ.
It follows from (5) and (6) that

SðtÞ ¼ eð0Þþ
Z t

0
fKK1eðsÞþKK2eðs�τ1ÞþKK3eðs�τ2ÞþαðC1�C2ÞxðsÞ

þðJ2�αJ1ÞþuðtÞþα½A2g1ðxðsÞÞ�A1f 1ðxðsÞÞþB2g2ðxðs�τ1ÞÞ

�B1f 2ðxðs�τ1ÞÞ�g dsþαD2

Z t

0

Z s

s�τ2
g3ðxðξÞÞ dξ ds

�αD1

Z t

0

Z s

s�τ2
f 3ðxðξÞÞ dξ ds ð7Þ

According to the sliding mode control theory, it is true that
SðtÞ ¼ 0 and _SðtÞ ¼ 0 as the state trajectory of the error system (5)
enters into the sliding mode. It thus follows from (7) and _SðtÞ ¼ 0
that an equivalent control law can be designed as

ueqðtÞ ¼�KK1eðtÞ�KK2eðt�τ1Þ�KK3eðt�τ2Þ�ðJ2�αJ1Þ
�αðC1�C2ÞxðtÞ�α½A2g1ðxðtÞÞ�A1f 1ðxðtÞÞþB2g2ðxðt�τ1ÞÞ

�B1f 2ðxðt�τ1ÞÞ��αD2

Z t

t�τ2
g3ðxðsÞÞ dsþαD1

Z t

t�τ2
f 3ðxðsÞÞ ds:

ð8Þ
Substituting (8) into (5), the sliding mode dynamics can be
obtained and described by

_eðtÞ ¼�ðC2þKK1ÞeðtÞ�KK2eðt�τ1Þ�KK3eðt�τ2ÞþA2Φ1ðeðtÞÞ
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