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Recently, sparse coding has been widely adopted for data representation in real-world applications. In
order to consider the geometric structure of data, we propose a novel method, local and global regularized
sparse coding (LGSC), for data representation. LGSC not only models the global geometric structure by a
global regression regularizer, but also takes into account the manifold structure using a local regression
regularizer. Compared with traditional sparse coding methods, the proposed method can preserve both
global and local geometric structures of the original high-dimensional data in a new representation
space. Experimental results on benchmark datasets show that the proposed method can improve the
performance of clustering.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decade, data representation has attracted
increasing attention in computer vision, information retrieval and
machine learning. In many applications [1-4], processing high
dimensional data in classification or clustering tasks is still a big
challenge. To improve the performance of classification or clus-
tering, a common way is to seek a meaningful low dimensional
representation of the high dimensional data by dimensionality
reduction or matrix factorization approaches.

Principal component analysis (PCA) [5] and linear discriminant
analysis (LDA) [6] are two widely used linear representation
methods. The former is an unsupervised learning approach, which
aims to preserve the global covariance structure of data. The latter
is a supervised learning method, which extracts the optimal dis-
criminant vectors when class labels of data are available. However,
both of them can not discover the latent manifold structure among
data. In the past a few years, many methods have been proposed to
address this issue. Among them, the most representative methods
are ISOMAP [7], locally linear embedding (LLE) [8] and Laplacian
Eigenmaps (LE) [9]. Although these manifold learning methods
have achieved impressive results on data visualization, they can-
not deal with the ‘out-of-sample’ problem. He et al. [10] proposed
a linear version of the LE, namely locality preserving projection

* Corresponding author.

http://dx.doi.org/10.1016/j.neucom.2015.10.048
0925-2312/© 2015 Elsevier B.V. All rights reserved.

(LLP), which can alleviate this drawback. Several data repre-
sentation methods, such as local and global regressive mapping
(LGRM) [11], graph regularized nonnegative matrix factorization
(GNMF) [12], local learning regularized nonnegative matrix fac-
torization (LLRNMF) [13], locally consistent concept factorization
(LCCF) [14] and local regularized concept factorization (LCF) [15],
have been developed to exploit the geometric manifold structure
of data. Extensive experimental results have demonstrated the
effectiveness of these techniques.

In recent years, sparse coding (SC) has shown great success in
data representation and a range of applications such as image
processing [16-18], classification [19-22], and visual analysis
[23-26]. Essentially, SC seeks to linearly represent a test sample by
only a few training samples, which leads to the sparsity of the
representation coefficient. To achieve sparse representation, many
methods have been developed in the past few years, e.g. sparse
PCA [27], sparse NMF [28], and sparse low-rank representation
[29]. However, in conventional sparse coding methods, a common
drawback is that some prior knowledge of data has been neglec-
ted, such as the geometric structure information. Wang et al [30]
presented a novel sparse coding method, called locality-
constrained linear coding (LLC). Furthermore, in order to pre-
serve the spatial consistency, locally-invariant sparse representa-
tion were proposed by pooling the sparse coefficients across
overlapping windows [31]. Mairal et al. [32] introduced a simul-
taneous sparse coding method by jointly decomposing groups of
similar signals on subsets of the learned dictionary, which was
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implemented using a group-sparsity regularizer. Zheng et al. [33]
proposed a graph regularized sparse coding (GSC) method for
image representation. In GSC, the geometric manifold structure
of data is taken into account by imposing the graph regularizer.
Thus, GSC performs significantly better than the traditional sparse
coding methods on several benchmark databases. However, GSC
only utilizes the local manifold structure of data by the regular-
ization technique, and neglects the global geometric relationship
of data. Therefore, a better approach is expected to learn a lower-
dimensional representation to preserve both local and global
structure of data, which is beneficial for achieving promising
performance.

Motivated by the recent progresses in sparse coding and
manifold learning, in this paper, a novel method, local and global
regularized sparse coding (LGSC), is proposed to represent the high
dimensional data. Compared with traditional sparse coding
methods, the proposed LGSC not only considers the manifold
structure of data by constructing a local regression predictor, but
also preserves its global structure using a global regression reg-
ularizer. Experimental results on several bench mark datasets have
validated the proposed the effectiveness of the LGSC methods.

It is worthwhile to highlight the main contributions of this
work as follows:

(1) We employ the local regression to model the local manifold

structure, and simultaneously use the global regression as a

regularization term to capture the global structure of data. In

LGSC, both local and global regression regularization terms are

combined into an integrated regularizer, which captures the

intrinsic geometric structure of real-world data.

In LGSC, the integrated regularizer is incorporated into the

traditional sparse coding method, which makes LGSC more

discriminative. In addition, we develop an iterative update
scheme to solve the optimization problem of the LGSC and
present the convergence curve in this paper.

(3) We conduct comprehensive experiments to analyse and
compare our method with several state-of-the-art methods.
The experimental results on real world image datasets
demonstrate that the proposed method is superior to other
data representation methods.

(2
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The rest of this paper is organized as follows. The sparse coding
and GSC methods are reviewed in Sections 2.1 and 2.2. The proposed
LGSC method is described in Section 3. Experimental results are
presented in Section 4. Finally, conclusions are drawn in Section 5.

2. Related works

This section contains description of related works to the pro-
posed approach, i.e. SC and GSC.

2.1. Sparse coding

Sparse coding aims to linearly represent a sample by a few
atoms in a dictionary. Given a data set X = [x1, X2, ..., Xn] € R™*" with
n data points sampled from an m-dimensional feature space. Let
DeR™* be an over-complete dictionary and AeR¥" be the
representation coefficient, where k denotes the number of the
atoms. In order to achieve the sparsity of coding coefficients, the
lo-norm is used to constrain the representation coefficient. Math-
ematically, the minimization problem of sparse coding can be
formulated as

m
nl}jqn||X—DA||12r+a > laillo
i=1

st|di|?<ci=1,...k (1)

where || - ||[rand || - ||o denote the Frobenius norm of a matrix and
the lp-norm of a vector, respectively, c is a given constant and a is a
constant parameter. Solving the lp-norm minimization problem is
NP-hard. Fortunately, it can be replaced by an l;-norm minimiza-
tion problem if the solution of Eq. (1) is sufficiently sparse [34,35].
Therefore, the optimization problem in Eq. (1) can be rewritten as
follows:

m
minliX ~ DAl +a > ldill
i=1

st|di|?<ci=1,..k )

where || -||; denotes the l;-norm of a vector. Since the [;-norm
minimization problem in Eq. (2) is a convex optimization problem,
it can be efficiently solved using existing software packages such
as l;-magic [36], PDCO-LSQR [37] and PDCO-CHOL[37].

2.2. Graph regularized sparse coding

Previous studies [7-9] have shown that manifold learning plays
an important role in data representation. A natural assumption is
that if two data samples are close in the original feature space,
then their low dimensional representation should be close to each
other in the new representation space. This is usually referred to
as the manifold learning assumption. Using graph regularization
techniques, GSC can discover the latent manifold structure of data.

Given a set of data points X = [X1, X2, ..., Xs] € R™", the geometric
structure of data can be characterized by a k-nearest neighbor
graph G = {X, W}with a vertex set X and an affinity weight matrix
W. If x; is among the k-nearest neighbors of x; or x; is among the
k-nearest neighbors of x;, W;j=1, otherwise, W;=0. The graph
regularization term is expressed as follows:

lm m
2

(a;—a)Wy; = Tr(ALAT) 3)
i=1j=1

where A = [ay, ---, ay] is the sparse coefficient matrix, L=D-W is the
Laplacian matrix, D is a diagonal matrix and Dy = >>;Wj;.

By incorporating the Laplacian regularizer (3) into sparse cod-
ing, the objective function of GSC can be expressed as follows:

m
min||X —SA||2 +aTr(ALA" a
min|X — SAIlF +aTr( )+ﬂ1; lail
stlaf?<ci=1,..k 4

where a and f are the regularization parameters. The optimization
problem in Eq. (4) can be solved by the feature search algorithm
proposed in [38].

3. The proposed method

We start this section by discussing the motivation of our work.
Then we introduce the proposed LGSC method in detail.

3.1. Motivation

Sparse coding is a typical data representation method based on
an over-complete dictionary. Most of sparse coding methods,
however, fail to make full use of the geometrical structure of data.
In fact, the intrinsic structure of data is unknown and complex in
many real-world applications. Thus, a single global or local graph
may be insufficient to characterize the underlying geometrical
structure of data. A reasonable approach should integrate both
local and global structures of data in the representation step.



Download English Version:

https://daneshyari.com/en/article/407151

Download Persian Version:

https://daneshyari.com/article/407151

Daneshyari.com


https://daneshyari.com/en/article/407151
https://daneshyari.com/article/407151
https://daneshyari.com

