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a b s t r a c t

Lag consensus is a phenomenon where followers track the trajectory of the leader with a time delay. By
using lag consensus, a protocol is designed for agents to behind the leader at different times, so as to
avoid congestion. In this paper, aiming to the lag consensus of second-order nonlinear multi-agent
systems, a control protocol for each follower based on local information of neighboring agents is
proposed, and an adaptive feedback control protocol is also given. Moreover, the multi-agent systems
with noisy environment are considered. The results suggest that our protocol is robust to the noise.
Finally, simulation examples are given to illustrate our theoretical analysis.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Consensus problems, as a basic and fundamental research topic in
distributed coordination of multi-agent systems, have drawn a great
deal of attention from different researches in recent years, due to its
broad range of applications in cooperative control of unmanned air
vehicles, formation control of mobile robots and flocking of multiple
agents. In the past few years, many significant results of first-order
systems have been obtained. Olfati-Saber and Murray presented a
systematic framework to analyze the first order consensus algorithms
for both fixed and switching topologies, and indicated that the
consensus problem can be solved if the diagraph is strongly connected
[1]. Ren and Beard pointed out that the interaction topology with a
spanning tree is critical for a swarm system to achieve consensus [2].
The research advances of first-order consensus problem refer to the
papers [3–5] and the books [6–8].

More recently, the second-order consensus of multi-agent systems
have received increasing attention. The second-order multi-agent
systems are determined by both position and velocity states, and
there is no guarantee of stability, even for strongly connected or
spanning-tree graph topologies, if the gains are unconstrained [9].
Therefore, the extension of consensus algorithms from first-order to
second-order is non-trivial. In most existing works, each agent can be
modeled as a simple linear system. This assumption makes technical
analysis much easier and allows using graph theory [10–13]. However,

in reality, mobile agents may be governed by more complicated
nonlinear dynamics. Indeed, second-order consensus problems with
nonlinear agent dynamics have been investigated in networks with
fixed topologies [14,15]. On the other hand, much progress has been
recently achieved in investigating leader–following consensus, in
which the task for all the agents is to follow the leader asymptotically.
For example, Ren et al. have discussed the leaderless consensus and
the leader-following consensus problem [16]. Meng et al. studied the
leader-following consensus problem for a group of agents with
identical linear systems subject to control input saturation [17]. Song
et al. have investigated the leader-following consensus in a network of
agents with nonlinear second-order dynamics via pinning control [18].

It is well known that the information flow in networks is not
instantaneous in general, where time delays widely exist. To our
knowledge, the main problem involved in consensus with time
delay is to study the effects of time delay on the convergence [19–
22] and consensusability [13,23,24]. Meanwhile, lag consensus
problems of agents are rarely taken into account, except a few
papers such as Xie et al. [25]. The lag consensus means that the
corresponding state vectors of followers are behind the leader
with a time delay. When the time delay is equal to zero, the agents
will reach consensus. By using lag consensus, a protocol is
designed for agents to behind the leader at different times, so as
to avoid congestion. For example, three isolated clusters of
vehicles follow the leader and pass across the obstacle, obviously,
they cannot pass across the obstacle at the same time (see the left
side of Fig. 1). Then, one can design a protocol in such a way that
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the ith cluster of vehicles is behind the leader with a time τk for
k¼ 1;2;3 and 0oτ1oτ2oτ3 (see the right side of Fig. 1). There-
fore, it is very meaningful to design a strategy for lag consensus of
second-order nonlinear multi-agent system.

Notice furthermore that, as shown in Hong et al. [10] and Ren [16],
the velocity states of agents are often unavailable. In this paper, a
control protocol for follower based on local position information of
neighboring agents is proposed for multi-agent systems to achieve lag
consensus, and an adaptive feedback control protocol is given. More-
over, lag consensus for the multi-agent systems with noise environ-
ment is considered. All the above fundamental lag consensus criteria
are based on Lyapunov functional method, matrix theory, stability
theory in stochastic differential equations. Finally, two simulations are
given to illustrate the effectiveness of our results.

The organization of the paper is as follows. Some preliminaries
are introduced in Section 2 and lag consensus analysis of the
second-order multi-agent systems with nonlinear dynamics is
discussed in Section 3. Lag consensus of the multi-agent systems with
an adaptive feedback control is considered in Section 4. Lag consensus
of themulti-agent systems in noisy environment is discussed in Section
5. The paper ends with illustrative examples followed by conclusions.

2. Preliminaries

2.1. Graph theory

Let G¼ ðV; EÞ be a weighted directed graph of order N, with the
set of nodes V ¼ fv1; v2;…; vng, the set of directed edges EDV � V.
An edge eij in graph G is denoted by the ordered pair of vertices,
where vj and vi are called the parent and child vertices, respec-
tively, meaning that nodes vi can receive information from node vj
[26]. The set of neighbors of vertices vi is denoted by
N i ¼ fjAV : ðj; iÞAEg.

The following notations are used throughout this paper. Let In
be the identity matrix of dimension n, 1n ¼ ½1;…;1�T ARn, and
0n ¼ ½0;…;0�T ARn. J � J is the Euclidean norm J � J2 in the
Euclidean space Rn, Cð½�τ;0�;RdÞ is the space of all continuous
Rd-valued functions defined on ½�τ;0� with a norm
JφJ1 ¼ sup� τr ζr0 JφðζÞJ , LpF t

ð½�τ;0�;RdÞ is the family of all
F t-measurable Cð½�τ;0�;RdÞ-valued random variables ϕ such that
expectation E‖ϕ‖p1o1, � denotes the Kronecker product. We say
X40 ðresp:;Xo0Þ if the symmetric matrix XARn�n is positive
definite (resp., negative definite). Given a symmetric matrix
PARn�n, we denote λmaxðPÞ the maximum of the eigenvalues of P
and λminðPÞ the minimum of the eigenvalues of P. In addition,
diagfλ1;…; λng defines a diagonal matrix with diagonal elements
λ1;…; λn.

2.2. Models description

For consensus problems in leader-following nonlinear multi-
agent systems, researchers mainly focus on the situations that the

states of the leader and followers asymptotically remain identical
with time evolution and does not pay attention to the lag
consensus phenomenon. For simplicity, we consider a situation
where an isolated cluster of agents follows the leader. One can
extend the results to deal with some isolated clusters of agents.

The leader v0 for multi-agent system is an isolated agent
described by

_x0ðtÞ ¼ v0ðtÞ;
_v0ðtÞ ¼ f ðx0ðtÞ; v0ðtÞÞ; ð1Þ
where x0ðtÞARm and v0ðtÞARm denote the position and velocity of
the leader, respectively.

The dynamical behavior of the ith follower vi is in the following
form:

_xiðtÞ ¼ viðtÞ;
_viðtÞ ¼ f ðxiðtÞ; viðtÞÞþuiðtÞ; ð2Þ
where xiðtÞ; viðtÞ and uiðtÞARm are the position, velocity and con-
trol input vector of agent vi, respectively, and f ðxiðtÞ; viðtÞÞ is the
intrinsic nonlinear dynamics of agent vi ði¼ 1;2;…;nÞ.

For the system (2), we consider a neighbor-based consensus
algorithms as follows:

uiðtÞ ¼ α
X
jAN i

aij xjðtÞ�xiðtÞ
� �

�bðxiðtÞ�x0ðt�τÞÞ�cðviðtÞ�v0ðt�τÞÞ; ð3Þ
where α is a positive number.

Definition 1. A multi-agent system (2) is said to achieve second-
order leader-following lag consensus if, for any initial states, the
solutions of (2) satisfy limt-þ1 JxiðtÞ�x0ðt�τÞJ ¼ 0 and limt-þ1
JviðtÞ�v0ðt�τÞJ ¼ 0 for a constant τ40 and all i¼ 1;2;…;n:

Let x̂iðtÞ ¼ xiðtÞ�x0ðt�τÞ; v̂iðtÞ ¼ viðtÞ�v0ðt�τÞ; x̂ðtÞ ¼ ½x̂T1ðtÞ; x̂T2
ðtÞ;…; x̂TnðtÞ�T ; v̂ðtÞ ¼ ½v̂T

1ðtÞ; v̂T
2ðtÞ;…; v̂T

nðtÞ�T ; ξ̂ðtÞ ¼ ðx̂T ðtÞ; v̂T ðtÞÞT . From
(1)–(3), one has

_̂ξ ðtÞ ¼
0 In

αA�bIn �cIn

" #
� Imξ̂ðtÞþ

0
GðtÞ

" #
; ð4Þ

where GðtÞ ¼ FðxðtÞ; vðtÞÞ�1n � f ðx0ðt�τÞ; v0ðt�τÞÞ; aii ¼ �
Pn

j ¼ 1;ja i aijði¼
1;2;…;nÞ; FðxðtÞ; vðtÞÞ ¼ ½f T ðx1ðtÞ; v1ðtÞÞ;…; f T ðxnðtÞ; vnðtÞÞ�T ;

A¼

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

2
6664

3
7775:

In the following, we give some useful lemmas for further
discussion.

Lemma 1 (Schur complement, Boyd et al. [27]). The following linear
matrix inequality

Q ðxÞ SðxÞ
ST ðxÞ RðxÞ

" #
40;

where Q ðxÞ ¼ QT ðxÞ;RðxÞ ¼ RT ðxÞ; is equivalent to one of the following
conditions:

(1) Q ðxÞ40;RðxÞ�ST ðxÞQ �1ðxÞSðxÞ40;
(2) RðxÞ40;Q ðxÞ�SðxÞR�1ðxÞST ðxÞ40:

Lemma 2 (Geršhgorin Circle Theorem, Horn et al. [28]). Let a matrix
A¼ ðaijÞn�n,

RiðAÞ ¼
Xn

j ¼ 1;ja i

jaij j

Fig. 1. ⓛ denote the leader, and denote the kth cluster of vehicles, k¼ 1;2;3:
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