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a b s t r a c t

Canonical correlation analysis (CCA) has been widely applied to information fusion. However, it only
considers the correlated information between the paired data and ignores the correlated information
between the samples in the same class. Furthermore, class information is helpful for CCA to extract the
discriminant feature, but there is no class information available in application of clustering. Thus, it is
difficult to utilize the correlated information between the samples in the same class. In order to utilize
this correlated information, we propose a method named Unsupervised Discriminant Canonical
Correlation Analysis based on Spectral Clustering (UDCCASC). Class membership of the samples is
calculated using the normalized spectral clustering, while the mappings for feature fusion are computed
by using the generalized eigenvalue method. These two algorithms are executed alternately before the
desired result is obtained. Two extensions of UDCCASC are proposed also to deal with multi-view data
and nonlinear data. The experimental results on MFD dataset, ORL dataset, MSRC-v1 dataset show that
our methods outperform traditional CCA and part of state-of-art methods for feature fusion.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Up to date, lots of studies on information fusion have been
reported in the literature. Generally, they can be divided into three
categories [1]: data fusion (low-level fusion), feature fusion (inter-
mediate-level fusion), and decision fusion (high-level fusion). Feature
fusion is to obtain new combinations of features, which have more
discriminant power for clustering or classification.

Presently, there are many effective feature fusion algorithms [2–7]
to extract the discriminant features and reduce the redundant
information. For example, Chetty and Wagner [7] proposed a feature
fusion method, named feature-level audiovisual fusion, for checking
liveness in face–voice person authentication. Canonical Correlation
Analysis is one of the most effective and most applied method. It
employs two views of the same object to get a pair of vectors
(denoted as Wx and Wy), and makes the mapped data (denoted as
WT

xx and WT
yy) correlated maximally. Due to its good performance,

CCA has been widely used for feature fusion, e.g., the joint use of
pixel features and wavelet features for image recognition [8].

Recently, lots of works have been devoted to CCA and many
improved variants are proposed. Ridderstolpe et al. [9] utilized

CCA to explore the relationship between possible risk factors and
several clinical outcomes in cardiac surgery. Hardoon et al. [10]
proposed kernel canonical correlation analysis (KCCA) to maintain
the nonlinear correlation of the two sets of features. To discover
the local manifold structure of the data, Sun et al. [11] proposed
Locality Preserved CCA (LPCCA). Furthermore, many supervised
variants are proposed. Sharma et al. [12] presented a general
framework for feature fusion, and it can be used to extend classical
feature techniques into Generalized multi-view ones such as
Linear Discriminant Analysis (LDA) [13], Locality Preserving Pro-
jection (LPP) [14], Neighborhood Preserving Embedding (NPE) [15]
and Marginal Fisher Analysis (MFA) [16]. Rasiwasia et al. [17]
proposed mean Canonical Correlation Analysis (mean-CCA) and
Cluster Canonical Correlation Analysis (cluster-CCA), which can be
applied to the case that the cluster information of each data (or
class membership of each data) is available.

Fig. 1 shows three examples of paired data of two categories.
These three data pair 1–10, 2–20 and 3–30 can be seen clearly in
Fig. 1, while data pair 1–10 and 2–20 belong to the same class and
3–30 comprises the samples of the other class. The correlation
between data in the same class can be classified into three
categories: (a) the correlation between paired data, which is
shown in Fig. 1 by the black dashed lines linking 1-to-10, 2-to-20

and 3-to-30; (b) the correlation between the same class across
views and it can be seen from Fig. 1 as a correlation across view
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which is shown by the red dotted lines linking the samples 1-to-
20; (c) the correlation between the same class within views and it
can be seen clearly from the figure as the relationship within a
class and is represented by the blue solid lines linking 1-to-2 and
10-to-20. Given pairs of samples fxi; yigni ¼ 1, CCA only considers the
correlated information of the paired data as the category (a); and it
can be seen as unsupervised feature extraction method in nature.
The correlated information in category (b) and (c) may contain
some important discriminant information, and maximization of
these correlations will make mapped samples more compact.
Furthermore, it can enhance the performance of classification or
clustering. Many supervised variants of CCA [18,12] are proposed
and can obtain remarkable performances. However, they only
considered the correlation of the category (a) and (b), but ignored
that of category (c).

In [19–21], Yang et al. argued that some connection may exist
between the classifier and dimension reduction(DR) methods. If
the DR method does not match the classifier, the performance of
the classification system will be degraded. To connect DR methods
with classifiers, one feasible way is to design the DR methods
according to the classification rule of a specific classifier. Based on
this idea, Yang et al. developed a DR method known as the local
mean based nearest neighbor discriminant analysis (LM-NNDA)
[19] according to the local mean based on nearest neighbor (LM-
NN) classifier [22]. Meanwhile, Chen and Jin [21] also proposed
another DR method known as reconstructive discriminant analysis
based on linear Regression classification (LRC) [23]. Experimental
results showed that maintaining this relation can be helpful to
upgrade the performance of these DR methods.

Up to date, CCA is still used in many clustering algorithms, such as
[3,4]. However, both of them can be seen as unsupervised methods in
nature without considering the correlation of category (b) and (c). To
utilize the correlated information between the samples in the same
class of categories (a), (b) and (c), we propose a method Discriminant
Canonical Correlation Analysis (DCCA) for feature fusion. However,
there is no label available before carrying out clustering. Thus, DCCA
cannot be directly applied to extract discriminant feature for cluster-
ing. As we all know, the cluster membership of each sample can be got
after carrying out clustering. Inspired by the DR algorithms according
to classifiers, we argue that there may be some connection between
the DR methods and the clustering algorithms. Spectral clustering [24]
algorithm was proposed by Shi et al., where most recent developed
algorithms [25–28] are based on its high performance. In Section 4, we
demonstrate by some simple algebraic operations that the calculated
results by spectral clustering equals that maximize the correlation
between samples of the same class. Therefore, DCCA can be consid-
ered as the DRmethod induced by modified Spectral Clustering. Based
on DCCA and SC, we proposed a method named Unsupervised
Discriminant Canonical Correlation Analysis based on Spectral Cluster-
ing (UDCCASC). Thus, the relation between DR method and clustering
algorithms can be persevered in UDCCASC which may be more

suitable for clustering. Furthermore, multi-view UDCCASC is devel-
oped to cope with multi-view data (more than two views), and kernel
UDCCASC is to deal with nonlinear data.

This paper is an extension of our international conference on
pattern recognition (ICPR) paper [29]. In this paper, we alter the
method for clustering and add the way to balance the weight of
correlated information of three categories. Further, we provide the
relation between DCCA and normalized spectral clustering. In
addition, more experiments are carried out to confirm the effec-
tiveness of UDCCASC.

The rest of this paper is organized as follows. In Section 2,
Unsupervised Discriminant Canonical Correlation Analysis based on
Spectral Clustering will be described in detail. The multi-view exten-
sion and kernel extension will be proposed in Section 3. Section 4 will
present in the relationship between discriminant canonical correlation
analysis and spectral clustering. The experiments are conducted on
three remarkable datasets to test the performance of our method in
Section 5. Finally, conclusions are drawn in Section 6.

2. Unsupervised discriminant canonical correlation analysis
for two views

This section will present a detailed explanation of the method
of discriminant canonical correlation analysis based on spectral
clustering. Given pairs of samples fx1i; x2igni ¼ 1; x1i and x2i are the
different descriptions of the same sample and the mean of these
two views data are zero. For each symbol of original multiple view
data, we define that xmn denotes the n-th data of m view and Xm

represents the data matrix of m view. Wi denotes the mapping for
i-th view. Without loss of generality, we use 1-of-K scheme to
represent the class membership of samples such as hiAR1�c (c
denotes the number of class of training samples). The label of
fx1i;x2igni ¼ 1 is denoted as one matrix HARn�c .

From the above analysis, we know that CCA only considers the
correlated information category (a). Correlated information of category
(b) and (c) is not considered, which may make CCA very sensitive to
noise and apt to over-fitting. Some variants of supervised CCA are
proposed [30,31,12], in which authors argued that the correlated
information of category (b) should be considered. Further, we argue
that the correlation of category (c) should be considered also.

However, in many real applications, there is a little label
information available. To utilize the correlated information of
category (a), (b) and (c), unsupervised discriminant canonical
correlation analysis based on spectral clustering (UDCCASC) is
proposed. The object function can be formulated as follows:

fW1;W2; λ;Hg ¼ arg max
W1 ;W2 ;λ;H

J W1;W2; λ;H
� �

¼ arg max
W1 ;W2 ;λ;H
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We define class similarity matrix as Sij ¼ hih
T
j , and hi is the i-th

row of H. We employ λ¼ ½λ1; λ2; λ3� to balance the weight of each
category of correlation, which is a popular scheme of controlling
the weight of multiple terms[32,33].

The first term in Eq. (1) represents the correlation between the
paired data, which is shown in Fig. 1 by the black dashed lines. The
second term represents the correlation between the same class across
views and it can be seen from Fig. 1 as a correlation across view which

Fig. 1. The correlation between samples in the same class. (For interpretation of
the references to color in this figure, the reader is referred to the web version of this
paper.)
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