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In this paper, applying the fixed point theorem and a new method, we study the existence, uniqueness,
and global exponential stability of solutions of NNs with continuously distributed delays and obtain
some new results in terms of system parameters. In our results, the exponentially convergent rate is
given and the conditions are less restrictive than previously known criteria. Therefore they can be
applied to NNs with a broad range of activation functions though these functions are neither
differentiability nor strict monotonicity.
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1. Introduction

For neural networks (NNs) with delays, by constructing a
suitable Lyapunov function for the system and then to derive
sufficient conditions ensuring stability, it is usually not an easy
task and these sufficient conditions are wanted to be very
restrictive. For the details, see [1-10]. Therefore we need some
new methods.

In models with delayed feedbacks, the use of constant discrete
delays provides a good approximation to simple circuits consist-
ing of a small number of neurons. But neural networks usually
have a spatial extent due to the presence of a multitude of
parallel pathways with a variety of axon sizes and lengths. Thus,
there will be a distribution of propagation delays. In this case, the
signal propagation is no longer instantaneous and cannot be
modeled with discrete time delay. A more appropriate way is to
incorporate distributed delays. Moreover, a neural network
model with distributed delay is more general than that with
discrete delay. This is because the distributed delay becomes a
discrete delay when the delay kernel is a § function at a certain
time. For details, see [6-10].
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In this paper, we consider the following NNs with continuously
distributed delays:

X0 = —uXiO+ Y afi(xi(t)

i=1

+ > bg; (/0 ki(s)x;(t—s) ds> +Ii(t). (1.1)

=1

where n is the number of units in a neural network, f;,I; e C(R),
wi» @i, by are constants with x; >0, y; represents the rate with
which the ith unit will reset its potential to the resting state in
isolation when disconnected from the network and external
inputs, g;; is the connection weights between ith unit and jth unit
at time ¢, by is the connection weights between ith unit and jth
unit, f;,g (G=1,2,...,n) are signal transmission functions,
Ii,x; i=1,2,...,n) are the activation and external inputs of the
ith neuron, respectively, k; denotes the refractoriness of the jth
neuron after it has fired or responded.
xi()=gi(t) (i=1,2,...,n) for
(pl(t) € C([—OO, O]a R).

In the previous exponential stability and existence results
of periodic solutions for (1.1), the following condition were used
[1-10].

(Ho) kj € C([0, 00),[0, 00)) and

te(—o0, 0] where

/ ski(s)ds <oo, j=1,2,....m;
0
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(H1) kj € C([0,00),[0, oo0)) and there exists k; > 0 such that
/ ’{j(s)d$:’<j>0, j:1;2,~~~an;
0

(H>) there exists p;,q; >0 (j=1,2,...,n) such that
Ifiw)—fi()| <pjlu—vl,
and

|gi(w)—g(v)| <gq;lu—vl,
(H3) there exist [; >0 (i=1,2,...,n) such that
Ii > ‘Pfé‘”f“)" i=1,2,...,n

u,veRandj=1,2,...,n

u,veRandj=1,2,...n;

and (H,4) there exist positive constants dq, do, ..., d, such that one of
the following conditions (i)-(vi) holds.

n
. 1
() Z {|aij|pj+|bij|q]‘Cj+E(|aji|djpi+‘bji|djqicj) <2y
j=1 !
fori=1,2,...,n;
1T E
(i1) @ Z(l aji| dip;+ | bji| djq;cj) <
=1
fori=1,2,...,n;
n
(i) > (lag|p;+ byl gic) < p;
=1
fori=1,2,...,n;
. 1 1 2, 2
(1v) Z {laijlpj+cj+5(\aj,-ldjp,--i—lbﬁl djqi Cj):| < 2pu;
j=1 !
fori=1,2,...,n;
n 1 )
UDY {|aij|pj+|bij|cj+5(‘aji|djpi+|bji|djqi Cj):| <2p;
ji=1 !
fori=1,2,...,n;
& 1 i
vi) > |:|azj|pj+q1‘Cj+E(|aji|djpi+|bji| deiCj)j| <2y
j=1 !
fori=1,2,...,n;
L , 1
(vii) > [lalp;+ byl q; ¢+ (1ajil i+ bji dic))] < 2p;
= i
fori=1,2,...,n;
. .1 5
(viii) > {Iaulpj-FQj G+ (16l dipi+ 1 bji| “djcy) | < 2p;
= l

fori=1,2,...,n.

The problem is whether (Hg) and the conditions (H,) are
necessary? Our answer is no.

The purpose of this paper is to delete (Hp) and the conditions
(Hy) in our new results and consider more general solution, i.e.,
prove that the following theorems hold.

Theorem 1.1. Under (H,), (H3) and the following condition
(H5) there exist pj» 95> hy, ;>0 (G=1,2,...,n) it such that

Ifjwl| <pjlul +h;, ueRand j=1,2,..,n

and

1&g (W) <qjlul +I, ueRandj=1,2,...,n,

then (1.1) has at least one solution.

Theorem 1.2. Under (H{)-(H3), then (1.1) has a unique solution.
Moreover, it is globally exponentially stable.

The paper is organized as follows:

In Section 2, we prove Theorem 1.1 by a new method.

In Section 3, we prove Theorem 1.2, especially, in the proof of
exponential stability, we use a new method but not Lyapunov
functions.

In Section 4, to demonstrate the application of our results, we
give an example.

2. Existence
In this section, we verify Theorem 1.1.
Set
X={x: xe(C(0, c0), RM}. 2.1
It follows that X is a Banach space with the norm
11l = max Il x(t) 2.2)
t>0

where lIx(t)l = (37, 1%(0)7)"".
For each x e X with x(t) = (X1 (t), X2(t), ..., Xa(t))", set

Fx(t) = (F1x(t), Fox(0), ..., Fax(t))T, (2.3)
where

ot n
Fix(t) = x;(0)e - N+ / e NHEI I Nxi(s)+ D agfi(i(5))

0 ji=1

=1

+ ) byg; (/Om ki(hyx;(s — h) dh) +I,-(s)} ds, i=1,2,..,n

(2.4)

and N > 0. Then it is easy to see that x(t) is the fixed point of the
operator F if and only if it is a solution of (1.1).

Proof of Theorem 1.1. Let N=>100max{{>{_; [>;/_,Iajl
AT+ (01 o 1 | byl qjkj]r}l/r, 1} be a constant.
Define a bounded, convex and closed subset B of X as follows:

B = {x(t) e X : Ix(t) Il <R(t),

[ k—1 k
te : 3 5
N+ming < < ppy’ N+Ming < <y

} and ke N.} 2.5)

where

R(Ey= R o~ (/5N +mins - 2 s~ (e~ (e 1/ N+ mimy 2 - )
(ty=—e

<N+min1 <i<npit1 _N+min1 gisn/"i_107(8/5)(t7(k—1)/(N+min, S,Sn,‘,))>
N N -

(2.6)

and

n i ry 1/1
R =max{ 20 Ix(0)|+{ {Zwiﬂqjkj} } el
i=1|j=1

ry T 1r
n n n
+{Z (Zlbvllj>} +{Z’?} 2 @7
=1 \j=1 iz

Then, from ef = 772 o ¢!/l min{R(t), [e~O/DN+mini<icumi—H(]
e~ ®H11 >0 for te[0,1/(N+ming.jcnu)], (21)-(2.7), Min-
kowski inequality, (H1), (H5) and (Hs), one obtains

n t
I Ex(0) | :{Zm(me(’”wu/ e~ (N+mE=9Nx,(s)
0

i=1
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