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Pullback attractor for Cohen-Grossberg neural networks with time-varying delays is investigated. By
using the theory of pullback attractors and Lyapunov-Krasovskii functional, some novel criteria are
established to ensure the existence of pullback attractor for Cohen-Grossberg neural networks. Finally,
two examples are given to illustrate our theoretical results and indicate that two sets of criteria do not
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1. Introduction

In 1983, Cohen and Grossberg proposed Cohen-Grossberg
neural networks [1]. As we know, Cohen-Grossberg neural net-
works is very general and includes Hopfield neural networks,
cellular neural networks and bidirectional associative memory
neural networks. For the sake of theoretical interest as well as
application considerations, a large number of scholars have studied
the dynamical behaviors of Cohen-Grossberg neural networks and
obtained considerable results. For example, the stability of the
equilibrium point is discussed in [2-16], the existence and unique-
ness of periodic solutions are investigated in [17-19], synchroniza-
tion is discussed in [20,21], boundedness is studied in [22].

Attractor is also one of the foundational dynamical behaviors.
The theory of global attractors for autonomous systems as devel-
oped by Hale [23] owes much to examples arising in the study of
(finite and infinite) retarded functional differential equations [24].
Recently, the theory of pullback attractors has been developed for
stochastic and non-autonomous systems in which the trajectories
can be unbounded when time increases to infinity, allowing many
of the ideas for the autonomous theory to be extended to deal
with such examples [25-32]. However, as far as we know, there
are few published results on the pullback attractor for Cohen-
Grossberg neural networks. Therefore, our main aim of this paper
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is to establish some sufficient criteria on the existence of pullback
attractor for Cohen-Grossberg neural networks.

In this paper, we consider the following Cohen-Grossberg
neural networks with time-varying delays

dx(t)
Tdr
where x = (x1, ..., x,)" is the state vector, A = (@j)nyn and B = (bjj),,p
represent  the connection weight matrix;  d(x(t))=
diag(di(x1(t)), ..., dn(xy(t))) presents an amplification function,
c(x(t)) = (c1(X1 (1)), ..., cn(xa()))T presents an appropriately behavior
function; J = (J;,....J,)" denotes the external bias; activation func-
tions  f(x(t) = (f1(X1 (D)), ....[oxa(®))T  and  gx(b)) = (g1 (x1 (1)),
- &n(xn(D)T are continuous; there exists positive constants 7
and p such that the transmission delay z(t) satisfies
O<tit)<r,7()<pu<l1.

The content of the paper is as follows. Some preliminaries are
in Section 2. Main results are presented in Section 3. Numerical
examples are given in Section 4. Finally, conclusions are drawn in
Section 5.

d(x(0)] — c(x(1) +Af (x(1) + Bg(x(t — 7(£))) +]1, (1.1

2. Preliminaries

First, let us introduce some notation.

Let >0 be a given positive number (the delay time) and
denote by £ the Banach space C([—7,0];R") endowed with the
norm &l =sups.(_,ql&@S)I,[ | is the Euclidean norm and
C([—7,0];R") is the space of all continuous R"-valued functions
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defined on [—7,0]. Denote by x; the element in £ given by
Xe(s)=x(t+s) for all se[—7,0]. A>0 (respectively, A>0) means
that matrix A is symmetric positive definite (respectively, positive
semi-definite). AT denotes the transpose of the matrix A. The norm

of matrix A is defined as |A| = \/Amax(ATA), Amin(A) and Apmax(A)
represents the minimum and maximum eigenvalue of matrix A,
respectively.

System (1.1) can be written as
dx(t)

g =F@o. 2.1)

where the map F(t, -) is defined as

F(t,&) = d(S(0)[— c(£(0))+Af(5(0) +Bg(E(—T(t) +]l. EeL.

(2.2)

F: R x £L—R" is continuous since f(x(t)) and g(x(t)) are continuous.
Throughout this paper, we assume the following conditions
hold.

(A1) There exist some constants [, [;",m;~ and m;" such that for
all x,ye Rx#y),
I~ <fi(x) _fi(.y) < l+

i = =4

x—y

_E0-50)_ .

m; = =4
X=y

(A;) There exist two matrices d=diag{d,,....,d,}>0 and
d= diag{gl, ...,gn} >0 such that forall xeR,i=1,2,....n,

0<d; <dix)<d;.

(A3) There exists two matrices o=diag{5,...,6n}>0 and
0 =diag{d1,...,6,} >0 such that for all x,yeR,i=1,...,n,

X(DCi(Xi() = Six2 (), | ci(X) — (V)] < Silx—yl.

Remark 1. Under conditions (A1) —(As), F is a bounded map (i.e.,
maps bounded sets into bounded sets). In fact, for every
EeD={&: 1€l <r,r>0}CL, it follows from (2.2) that

|F(E.&)1 < 1dEO)I[1cEO)I +AIfEO)] + I BIZE=7®)] +1]1]
< max (di)[(](0)| + max (5;}|£0)])

+ 1 Ama A" AYIFO) + max (171, 17 }EO)])

+\/ Amax(B'B)(12(0)| + max {[m" |, 1m; 1} E(=z(O)D)+1]I]

< max {d;}{(Ic0)] + max {5;}r)

+/ AmaxATAYIFO)] + max {1171, 11 1}r)

+/ Amax(B'B)(12(0)] + max {[m;" |, |m” [}r)+1]1].

Remark 2. Condition (A;) is less conservative than that of in [8],
since the constants li’,l,v*,m; and m;* are allowed to be positive,
negative numbers or zeros. It is clear that f and g satisfy Lipschitz
condition.

It follows from [23,27,28] that for any (s, £) € R x L, there exists
a solution x(t; s, £) for system (2.1). We define a solution operator
¢(t,s) which gives the solution (in £) at time t when x; =&, via

¢(t3 5)5 = X[('; S, 5)

For the following definitions and result, see [27].

Definition 1. Let ¢b be a process on a complete metric space X. A
family of compact sets {A(t)};.r is said to be a (global) pullback
attractor for ¢ if, for all s e R, it satisfies

P(t,5)A() = A(t), forallt>s,

Slirglodist(qﬁ(t, t—s)D, A(t))=0, for all bounded subsets D of X.

In Definition 1, dist(A, B) is the Hausdorff semidistance between
A and B, defined as

dist(A, B) = sup infd(a,b), A,B<X.
acAbeB

Definition 2. {B(t)}; . is said to be absorbing with respect to the
process ¢ if, for all teR and all Dc X bounded, there exists
Tp(t) > 0 such that for all h > Tp(t), p(t, t —h)D C B(t).

Lemma 1. Suppose that F and ¢(t,s) map bounded sets into bounded
sets, and that there exists a family {B(t)}; .r of bounded absorbing
sets for ¢b. Then there exists a pullback attractor { A(t)}, .  for problem
(2.1).

3. Main results

Theorem 1. Suppose that there exist some matrices
P=diag{p;,....py} > 0,Qi(i= 1,2,3,4)> 0,U;= diag{u;s,...,
Ui} > 0(i=1,2,3) such that
21] 0 U1L2 U2M2 0

% 222 0 0 UsM,
=] =% X33 0 0 <0,

* * * DI 0

* * * * 2ss

where % means the symmetric terms,

Sy =3d°P—2P8d —2U1 Ly — 2Us My +Q; +7Q,,

Xy = —2UsMy —(1—-p)Qq. X33 = 7Q4 +A'PA-2U},
24=Q3-2U;, Xss=—2Us—(1-u)Q3+B'PB,

Ly =diag{ly I, ..., 1; T}, Ly=diag{ly +1{,....,1; +1},

M; =diag{m; m;",....m; m;},

M, =diag{m; +m;,...m; +m]}.

Then there exists a pullback attractor {A(t)}, . g for system (2.1).

Proof. From X <0, there exists a sufficient small constant A >0
such that

E]] 0 U]Lz UzMZ 0
£ 222 0 0 U3M2
= = % X3 0 0 <0, 3.1
% % % PN 0
% % % % Xss

where [ denotes identity matrix,

311 = AP+241+3d°P—2P5d — 2U; L — 2UsM; +€4°Q; +17Qs.

Sy =M —=2UsM; —(1—p)Qq, X33 =2A+17Q4+A"PA-2U,

344 =2M4+Q3e% —2U,, Xs5=21—2Us—(1—p)Q5+B'PB.

Let x(t) be an arbitrary solution with IIx, | <r. The Lyapunov-

Krasovskii functional V(t) is defined as
t

V(t) = eHXT(O)Px(t)+ / eI (5)Q1x(5) +8T (X(5))Q38(X(5))] ds

t—1(t)

t t
+ / / T (0)Qx(O) + T (X(O)Quf ()] dO ds.  (3.2)
t—1(t) Js
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