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In this paper, we investigate the existence and global exponential stability of the anti-periodic solution
for delayed Cohen-Grossberg neural networks with impulsive effects. First, based on the Lyapunov
functional theory and by applying inequality technique, we give some new and useful sufficient
conditions to ensure existence and exponential stability of the anti-periodic solutions. Then, we present
an example with numerical simulations to illustrate our results.
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1. Introduction

Since Cohen-Grossberg neural networks (CGNNs) have been
first introduced by Cohen and Grossberg in 1983 [1], they have
been intensively studied due to their promising potential applica-
tions in classification, parallel computation, associative memory
and optimization problems. In these applications, the dynamics of
networks such as the existence, uniqueness, Hopf bifurcation and
global asymptotic stability or global exponential stability of the
equilibrium point, periodic and almost periodic solutions for
networks plays a key role, see [2-7] and references cited therein.

Time delays unavoidably exist in the implementation of neural
networks due to the finite speed of switching and transmission of
signals. Besides delay effects, it has been observed that many
evolutionary processes, including those related to neural net-
works, may exhibit impulsive effects. In these evolutionary pro-
cesses, the solutions of system are not continuous but present
jumps which could cause instability in the dynamical systems.
Since the existence of delays and impulses is frequently a source of
instability, bifurcation and chaos for neural networks, it is impor-
tant to consider both delays and impulsive effects when investi-
gating the stability of CGNNs, see [8-12].

Over the past decades, the anti-periodic solutions of Hopfield
neural networks, recurrent neural networks and cellular neural net-
works have actively been investigated by a large number of scholars.
For details, see [13-15,18] and references therein. In [13], the author
considered the existence and exponential stability of the anti-periodic
solutions for a class of recurrent neural networks with time-varying
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delays and continuously distributed delays. In [14], by constructing
fundamental function sequences based on the solution of networks,
the authors studied the existence of anti-periodic solutions for
Hopfield neural networks with impulses. In [15], by establishing
impulsive differential inequality and using Krasnoselski's fixed point
theorem together with Lyapunov function method, the authors
investigated the existence and exponential stability of anti-periodic
solution for delayed cellular neural networks with impulsive effects. In
[16], by constructing fundamental function sequences based on the
solution of networks, the authors studied the existence and exponen-
tial stability of anti-periodic solutions for a class of delayed CGNNSs.
However, till now, there are very few or even no results on the
problems of anti-periodic solutions for delayed CGNNs with impulsive
effects, while the existence of anti-periodic solutions plays a key role
in characterizing the behavior of nonlinear differential equations (see
[17]). Thus, it is worth investigating the existence and stability of anti-
periodic solutions for CGNNs with both time-varying delays and
impulsive effects.

Motivated by the above discussions, in this paper, we are con-
cerned with the existence and the exponential stability of anti-
periodic solutions for a class of impulsive CGNNs model with periodic
coefficients and time-varying delays. By using analysis technique and
constructing suitable Lyapunov function, we establish some simple
and useful sufficient conditions on the existence and exponential
stability of anti-periodic solutions for CGNNs with impulsive effects.

The rest of the paper organized as follows. In Section 2, the proposed
model is presented together with some related definitions. In addition,
a preliminary lemma is given. Next section is devoted to investigate the
existence and exponential stability of anti-periodic solution of the
addressed networks. An illustrative example ends Section 4.
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2. Preliminaries

In this paper, we consider the following impulsive CGNNs
model with time-varying delays:

X(0 = (0| ~B(E (O + X exOf 500+ 3 OB E @) +hD) | £20. £,
J= J=

AXi(ti) = xi(tF ) — xi(ty) = yirXi(te),

where n denotes the number of neurons in the network, x;(t)
corresponds to the state of the ith unit at time ¢, a;(x;(t)) represents
an amplification function, b;(t,x;(t)) is an appropriate behaved
function, f;(x;(t)) and g;(x;(t —;(t))) denote, respectively, the mea-
sures of activation to its incoming potentials of the unit j at time ¢
and t—z;(t), 7;(t) corresponds to the transmission delay along the
axon of the jth unit and is non-negative function, and I;(t) denotes
the external bias on the ith unit at time t. Concerning coefficients
of differential system (1), c;(t) denotes the synaptic connection
weight of the unit j on the unit i at time ¢, di(t) denotes the
synaptic connection weight of the unit j on the unit i at time
t—z;i(t), where 7;(t) > 0, i,j=1,2,....n.

Throughout the paper, we always use i,j=1,2,...,n, unless
otherwise stated. The initial conditions associated with system
(1) are given by

Xi(S) = i),

where 7=maxy <jj<a{SUp; .- 7ij(0)}, ¢;(s) e C((—7,0],R), which
denotes the Banach space of all continuous functions mapping
[—7,0] into R with co—norm defined by

se[—1,0],

lplloo = max { sup |¢zi(s)|}.
lT<i<n|se[—z0]
A solution x(t) = (X1 (t), X2(t), ..., xa(t))” of impulsive system (1) is
a piecewise continuous vector function whose components belong
to the space
PC([—1, +00),R) = {¢(t) : [—7, +00)—>R is continuous for t # t;,
oty ), ot)eR and o(t; ) = p(ty)}.
A function u(t) e PC([— 7, +o0),R) is said to be w—anti — periodic,
if
u(t+w) = —u(t), t # ty,
u((ty+o) )= —u(tf), k=1,2,....

Let R" be n-dimensional vector space. For any u = (uq,uy, ...,
uy)" eR", its norm is defined by

lully = max |u;|.
1<i<n
In addition, we also formulate the following assumptions:

(Hy) a; e C(R,R™) and there exist positive constants a; and a;
such that

g <ag)<a; forallueR

(Hy) For each u, b;(-, u) is continuous, b(t,0) = 0 and there exists a
continuous and w-periodic function p;(t) > 0 such that

bi(t, u)y— bi(t, V)

U,VveR, u#v.
u—v

> pi(0),
(H3) The activation functions fj(u), gj(u) are continuous,

bounded and there exist Lipschitz constants L},sz > 0 such

that
Ifiw—fwl <Ljju—vl, |gw-gW)<Llu—v], uveR.

(M

keN2{1,2,..},

(Ha) ¢, dij, 75, 1; € C(R,R), and there exists a constant w > 0 such
that
ai(—u) =a;u), bi(t+w,u)= —Dbi(t, —uw),
= —i(O)f j(—w), [i(t+ o) = = I;(t),
= —d,»j(t)gj(—u), 7jj(t+ ) = 75(0).

Cij(t+w)fj(u)
dy(t+w)g;j(u)

(Hs) |1+y4l <1 and there exists a positive integer q such that

[0, @] N {tidis1 = {t1, L2, ..., L),
Yitk+q =7Vik» KeN.

tk+q =+,

About the jumps, {t};- is a strictly increasing sequence of
positive numbers such that ¢, | —t, >«, for all ke N, ty—>oc0 as
k— oo, where x> 0. Ax;(ty) =x;(t])—x;(t) represents the abrupt
change of x,(t) at impulsive moment t.

The following definition is given to obtain our results.

Definition 1. Let x*(t) = (x§(t), X5(t), ..,X%5)T be an anti-periodic
solution of differential system (1) with initial value ¢* = (¢%(s),
¥3(9), ..., ¢%(s)T. If there exist some constants 2 > 0 and M > 1 such
that for every solution x(t)= (x;(t),Xa(t), ....xa(t))" of system (1)
with any initial value ¢ = (¢{(5), 93(S), ..., (),

Ix(t)—=x*t) Il <Mllp—g*lle *, Vt=>0,

where llg—g¢*llo =Sup_,_s_oMaxy <j<nlpi(s)—¢i(s)l. Then, the
anti-periodic solution x*(t) of system (1) is said to be globally
exponentially stable.

In addition, in the proof of the main results we shall need the
following lemma.

Lemma 1. Let hypotheses (H)-(H3) and (Hs) be satisfied and
suppose there exist n positive constants py,p,, ..., p, such that

P+ 3 e e+ ¥ O +D0 <0, te0.0) @
J= J=
where
Dit= 3 IO+ 3 1dOlgO1+ 1.
J= J=

Then any solution X(t)= (X;(t),Xa(t), ....xn(t))" of system (1) with
initial condition

Xi(S) = @i(s), e <p;, te[-70] i=1,2,..,n
verifies
xi($)|<p; forallt>0,i=1,2,....n. 3)

Proof. For any assigned initial condition, hypotheses (Hy), (H>)
and (Hs) guarantee the existence and uniqueness of x(t), the
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