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a b s t r a c t

The variable precision rough set model resists noise in data by introducing a parameter to relax the strict
inclusion in approximations of the classical rough set model, and attribute reduction with the variable
precision rough set model aims at deleting dispensable condition attributes from a decision system by
considering this relaxation. In the variable precision rough set model, the approach of the discernibility
matrix is the theoretical foundation of attribute reduction. However, this approach has always heavy
computing load, so its effective improvement is clearly of importance in order to find reducts faster.
In this paper, we observe that only minimal elements in the discernibility matrix are sufficient to find
reducts, and each minimal element is at least determined by one equivalence class pair relative to
condition attributes. With this motivation, the relative discernibility relation of a condition attribute is
defined to characterize minimal elements in the discernibility matrix, and the algorithm of finding all
minimal elements is developed by this characterization. Based on the algorithm of finding all minimal
elements, we develop two algorithms to find all reducts and one reduct in variable precision rough sets.
Several experiments are performed to demonstrate that our methods proposed in this paper are effective
to reduce the computing load.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The variable precision rough set model (VPRS) [30,31], which is
one of the improvements of Pawlak's rough set model [7,10,24,30],
shows certain robustness to misclassification and noise in data.
It relaxes the strict inclusion in approximations of Pawlak's
rough set model [17,18] to the partial inclusion by considering
a parameter as an inclusion degree. Essentially, this parameter
represents a threshold that determines the portion of the objects
in an equivalence class which are classified to the same decision
class. Many researchers have focused on the selection of the
parameter [1–5,8,21] and developing some extensions of VPRS
[11,13,20,26,28]. On the other hand, more researches have been
put forward on the investigation of attribute reduction with VPRS
[3,9,12,14,25,29]. Similar to the purpose of attribute reduction
with Pawlak's rough set model, attribute reduction with VPRS also
aims at selecting a set of less condition attributes to provide the
same classification information as the full condition attributes set
by introducing this parameter.

Attribute reduction with VPRS was originally proposed in [30]
to preserve the sum of objects in the β-lower approximations of all

decision classes by defining the dependency function. This kind of
reduct is called approximate reduct or β-reduct, and was noted not
to preserve the β-lower approximation of each decision class in
VPRS [3,9]. Therefore, the derived decision rules from β-reduct
may be in conflict with the ones from the original decision system
[14]. Considering these drawbacks of β-reduct, the concepts of
β-lower and upper distributed reducts based on VPRS were
presented in [14] to preserve β-lower and upper approximations,
respectively. Meanwhile, the derived decision rules from β-lower
and upper distributed reducts are compatible with the ones
derived from the original system. Furthermore, in [14] β-lower
and upper distributed discernibility matrices were also provided
to find β-lower and upper distributed reducts, respectively.

As noted in [29], the dependency function, the positive region
and the β-lower approximation may not be monotonic in VPRS
after deleting a condition attribute. Consequently, the algorithm of
finding β-reduct may not be convergent by applying the measure
of dependency function. In [22], the algorithm of attribute reduc-
tion was proposed by using β-variable precision rough entropy,
where both the precision parameter and the correction coefficient
were given in advance. VPRS-QuickReduct algorithmwas proposed
in [16] to improve the current QuickReduct algorithm by selecting
the biggest dependency attribute during each iteration and using
VPRS's dependency as a criterion which admitted some small
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errors. However, the above two heuristic algorithms in [16,22]
share a common trouble that they usually cannot find a proper
reduct but an over-reduct or sub-reduct due to their stop criteria.
Here, an over-reduct may include redundancy condition attributes,
while a sub-reduct may ignore some key condition attributes. An
over-reduct or sub-reduct is acceptable to save running time, but it
is not enough to further capture key attributes for practical
problems. To find proper reducts, the commonly used discern-
ibility matrix method was developed in [14], where a discernibility
function was constructed to find all reducts. Besides, the binary
discernibility matrix [23,6] was successively developed to find
attribute reduction for VPRS. In essence, the binary discernibility
matrix [6,23] is equivalent to the distributed discernibility matrix
proposed in [14], and can be also used to find all reducts. Even
though finding all reducts with this technique is an NP-hard
problem [19], this method provides a mathematical foundation
of finding attribute reduction for VPRS. On the other hand, a search
algorithm based on the discernibility matrix can be developed to
find a proper reduct but requires heavy computational load since it
has to employ all non-empty elements in the discernibility matrix.

We observe in this paper that it is dispensable to calculate all
elements of a β-distributed discernibility matrix, and only some
selected elements called minimal elements are sufficient to find
reducts. We also find that every minimal element can be deter-
mined by one pair of equivalence class relative to condition
attributes (ECPC) at least. These facts motivate us in this paper to
develop novel algorithms to compute β-distributed reducts based
on minimal elements in the β-distributed discernibility matrices. As
a result, the computational load can be effectively reduced.

In this paper, we develop a technique to find β-lower and upper
distributed reducts for VPRS by improving the existing approach of
the β-upper and lower distributed discernibility matrices, where
only minimal elements in the β-upper and lower distributed
discernibility matrices are considered. First, β-upper and lower
distributed relative discernibility relations of each condition attri-
bute are defined. The minimal elements in the β-upper and lower
distributed discernibility matrices are characterized by the β-upper
and lower distributed relative discernibility relations, respectively.
Then, we develop an algorithm to find all minimal elements in the
β-upper and lower distributed discernibility matrices. Finally,
we design novel algorithms to compute all β-distributed reducts
and one β-distributed reduct based on the minimal elements, and
several experiments are also performed to demonstrate our idea in
this paper is effective.

The remainder of this paper is structured as follows. In Section 2,
we review some basic notions of attribute reduction for VPRS. In
Section 3, we characterize minimal elements of the β-distributed
discernibility matrix by β-distributed relative discernibility relations
and develop the algorithms of finding all minimal elements, all
β-distributed reducts and one β-distributed reduct. In Section 4,
taking the β-lower distributed reduct as an example, we perform
numerical experiments to demonstrate the effectiveness of our
methods proposed in this paper. We conclude this paper in Section 5.

2. Attribute reduction for VPRS

In this section, we mainly review attribute reduction with VPRS
from [14].

An information system is a pair S¼ ðU;AÞ, where U ¼ fx1;
x2;…; xng is a non-empty, finite universe of discourse and
A¼ fa1; a2;…; amg is a non-empty, finite set of attributes. With
every BDA, we associate a binary relation INDðBÞ, which is called
the B-indiscernibility relation and defined as INDðBÞ ¼ fðx; yÞA
U � U : aðxÞ ¼ aðyÞ; 8aABg. Then, INDðBÞ is an equivalence relation
and can partition U into a family of disjoint subsets U=INDðBÞ ¼

f½x�B : xAUg, where ½x�B denotes the equivalence class of INDðBÞ
including x.

For an inclusion degree βAð0:5;1� and XDU, we can character-
ize X by a pair of β-upper and lower approximations:
INDðBÞβðXÞ ¼ [ f½x�B : PðXj½x�BÞ41�βg and INDðBÞ

β
ðXÞ ¼ [ f½x�B :

PðXj½x�BÞZβg. Here, PðXjYÞ ¼ jX \ Y j=jY j if jY j40, and PðXjYÞ ¼ 1
otherwise. jXj is the cardinality of set X.

A decision table (DT) is an information system An ¼ ðU;A [ DÞ,
where A \ D¼ ϕ. A is the set of condition attributes, while D¼ fdg
is the decision attribute set. For the sake of simplicity in the
sequel, suppose Vd ¼ f1;2;…; rg is the range of d and
U=INDðDÞ ¼ fD1;D2;…;Drg, where Dj ¼ fxAU; dðxÞ ¼ jg is the deci-
sion class for j¼ 1;2;…; r.

Definition 2.1. [14] Let ðU;A [ DÞ be a DT, BDA, Hβ
B ¼

ðINDðBÞβðD1Þ;…; INDðBÞβðDrÞÞ, LβB ¼ ðINDðBÞ
β
ðD1Þ;…; INDðBÞ

β
ðDrÞÞ.

B is called a β-upper (lower) distributed reduct of ðU;A [ DÞ iff B
is a minimal subset of A such that Hβ

B ¼Hβ
AðLβB ¼ LβAÞ.

According to Definition 2.1, we can see that β-upper (lower)
distributed reduct preserves β-upper (lower) approximation of
each decision class. However, as indicated in [26], β-upper (lower)
distributed may not be monotonic with the parameter, and thus in
our paper we will not discuss the relationship between this type of
reduct and the parameter. To find β-upper (lower) distribute
reducts, β-upper (lower) distributed discernibility matrices are
given as follows.

Definition 2.2. [14] Let ðU;A [ DÞ be a DT, BDA, U=INDðDÞ ¼
fD1;…;Drg, U=INDðBÞ ¼ fM1;…;Mng, Mβ

BðxÞ ¼ fDj : xA INDðBÞβðDjÞg
and Gβ

BðxÞ ¼ fDj : xA INDðBÞ
β
ðDjÞg, 8xAU. We denote Dnβ

1 ¼
fð½x�A; ½y�AÞ : Mβ

AðxÞaMβ
AðyÞg, Dnβ

2 ¼ fð½x�A; ½y�AÞ : Gβ
AðxÞaGβ

AðyÞg and
denote by akðMiÞ the value of the condition attribute ak with
respect to the objects in Mi.

Define

Dβ
l ðMi;MjÞ ¼

fakAA : akðMiÞaakðMjÞg; ðMi;MjÞADnβ
l ;

A; ðMi;MjÞ=2Dnβ
l ;

8<
:

ðl¼ 1;2Þ:

Then, Dβ
l ðMi;MjÞ, ðl¼ 1;2Þ are called β-upper distributed and

β-lower distributed discernibility attribute sets respectively.
Dβ
l ¼ ðDβ

l ðMi;MjÞ; i; jrnÞ, ðl¼ 1;2Þ are called β-upper distributed
and β-lower distributed discernibility matrices, respectively.

Remark 2.1. In the remainder of this paper, we assume that
notions with the subscripts l are related to β-upper distributed
and β-lower distributed discernibility matrices respectively and
the mark ðl¼ 1;2Þ located by these notions is ignored.

Clearly, Dβ
l is symmetric and Dβ

l ðMi;MiÞ ¼ A. For 8Dβ
l ðMi;MjÞADβ

l ,
if there does not exist another element in Dβ

l as its proper subset,
Dβ
l ðMi;MjÞ is called a minimal element in Dβ

l .
Denoted by Mβ

l ¼ 4f3fak : akADβ
l ðMi;MjÞg : i; jrng, Mβ

l are
referred to the β-upper and lower distributed discernibility func-
tions, respectively. Let Mnβ

l be the reduced disjunctive form of Mβ
l

obtained from Mβ
l by applying the distributed and absorption

laws as many times as possible, then there exist t and AliDA
for i¼ 1;2;…; t, such that Mnβ

l ¼ ð4Al1Þ3⋯3 ð4AltÞ. Therefore,
REDβ

l ¼ fAl1;Al2;…;Altg are the collections of all β-upper and lower
distributed reducts, respectively.

Moreover, we denote the intersection of all β-upper or lower
distributed reducts by Iβl ¼ faAA : Dβ

l ðMi;MjÞ ¼ fag; where ðMi;MjÞ
ADnβ

l g [14].
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