
An efficient crossover architecture for hardware parallel
implementation of genetic algorithm

Rasoul Faraji n, Hamid Reza Naji
Department of Electrical and Computer Engineering, Graduate University of Advanced Technology, Haftbagh BLV, Kerman, Iran

a r t i c l e i n f o

Article history:
Received 22 March 2013
Received in revised form
24 August 2013
Accepted 25 August 2013
Communicated by R.W. Newcomb
Available online 18 October 2013

Keywords:
Genetic algorithm
FPGA
Crossover operator

a b s t r a c t

In this article a new architecture for hardware implementation of genetic algorithm in reconfigurable
embedded systems is presented. The main idea is based on the efficient use of a genetic algorithm's
crossover operator to enhance the speed of algorithm to reach an optimal solution. In this article a new
crossover called DSO and also two new architectures for implementation of crossover operators are
introduced to provide suitable solutions for solving the problems related to fitness function of the genetic
algorithm. At first, some optimum operators are selected and then utilized in a new parallel architecture
to increase the speed and accuracy of algorithm convergence. Finally, based on reusability of existing
resources, the main idea of the article is introduced to improve the performance of the algorithm and
finding the optimal solution. The properties of FPGAs such as flexibility and parallelism help this purpose.

Crown Copyright & 2013 Published by Elsevier B.V. All rights reserved.

1. Introduction

The genetic algorithm is an efficient search-optimization tech-
nique inspired by natural evolution for finding approximate
solutions. This algorithm is a stochastic search based on iteration.
Complex optimization problems with too many solutions need
a method of finding an appropriate solution in the least possible
time. Meta-heuristics algorithms like genetic algorithm can be a
suitable approach according to its characteristics. The character-
istics that drive the genetic algorithm to approach this goal are:

(1) The genetic algorithm uses stochastic search technique in sets
of population that leads to wide access of existing solutions.
These sets of population are placed in the global search space.
The global search selects a series of regions from the entire
search space for detailed exploration by the local search.
In fact, the local search accelerates finding optimal solutions.

(2) The use of stochastic variables in the main operators of the
algorithm (such as mutation and crossover) and also applying
probabilistic transition rules, help the convergence of algo-
rithm to the appropriate solution.

(3) The genetic algorithm uses the inherited fitness function
information and doesn't need of additional auxiliary knowl-
edge [1]. In fact in this algorithmwhen decisions are made and
changes occur then fitness function is used to determine
whether new changes improve the results or not.

FPGAs provide suitable platforms for hardware implemen-
tation of software algorithms. The low execution time of FPGA in
comparison with its software counterparts is the main reason of
using FPGA as a platform to implement the genetic algorithm.
A feature which enhances the performance of FPGAs is its parallel
processing capability. This feature enables the algorithm to
enhance its performance by running different parts of algorithm
simultaneously which is very important in real time applications.
Note that, the parallel implementation requires a large amount of
hardware resources and high rate of memory access, so we prefer
to use a combination of pipeline and parallel method [2]. In order
to have an optimum performance the main operators of this
algorithm can be implemented using pipeline.

In recent years, new methods for hardware implementation of
genetic algorithms are proposed to improve its accuracy [3,4],
increase the speed of operation [1,5–7], reduce the resources used
for implementation [8], improve the searching space [9], having
a general-purpose design [10] and enhance the performance
of floating-point fitness functions [11]. Considering the features
of FPGAs, this article tends to introduce a new method that
increases the speed and accuracy of algorithm using this technol-
ogy. We chose some optimum crossover operators with new
architecture to achieve a better performance. The main idea is to
use multiple crossovers in the form of a single crossover which
runs simultaneously with other crossovers to enhance the prob-
ability of convergence to get an optimal solution. The generations
produced by this crossover are somehow a kind of anticipation of
the future generations.

The paper is organized as follows: In Section 2, the principles of
genetic algorithms are described, a general overview of the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter Crown Copyright & 2013 Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.neucom.2013.08.035

n Corresponding author. Tel.: þ98 3426226611; fax: þ98 3426228011.
E-mail addresses: R.Faraji@kgut.ac.ir (R. Faraji), hamidnaji@ieee.org (H.R. Naji).

Neurocomputing 128 (2014) 316–327

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2013.08.035
http://dx.doi.org/10.1016/j.neucom.2013.08.035
http://dx.doi.org/10.1016/j.neucom.2013.08.035
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.08.035&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.08.035&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.08.035&domain=pdf
mailto:R.Faraji@kgut.ac.ir
mailto:hamidnaji@ieee.org
http://dx.doi.org/10.1016/j.neucom.2013.08.035


proposed architecture is presented in Section 3. Section 4 provides
implementation of the proposed algorithm. Simulation results and
comparisons are presented in Section 5. Section 6 provides
conclusion and finally related future works are discussed in
Section 7.

2. Principles of genetic algorithms

In genetic algorithm, at first some chromosomes are randomly
selected through the initial population using a special search
method. Then a value is assigned to the selected chromosomes
according to the fitness function and two chromosomes that
have the highest fitness value are chosen as initial parents. These
parents are then reproduced to form a new generation using
crossover and mutation operators in a repeated process. Crossover

operator is one of the most important operators in genetic algo-
rithm and it combines chromosomes to produce a new generation
by providing general heuristics.

Crossover and mutation operators attempt to perturb the
characteristics of parents to generate distinct offspring with better
characteristics than their parents. If the produced generations
have more appropriate values than their parents based on fitness
function, they will substitute their parents in the next reproduc-
tion process. This process repeats until some criteria such as range
of convergence, number of produced generations and evolution
time are achieved. The Pseudocode of genetic algorithm is shown
in Fig. 1.

In this algorithm, the local search interacts with the global
search to have an optimal search. After producing new offspring
and replacing the old generations, the algorithm would stop when
criteria are satisfied. Now if the solutions do not get to the
convergence range and the stopping condition does not satisfy,
then the algorithm will be repeated infinite times. To solve this
problem we use number of produced generations (gen-number)
and after a specified number of generations algorithm stops
whether it is converged or not. So the number of produced gene-
rations is an appropriate criterion for evaluation of the results.

3. The proposed algorithm

Fig. 2 shows the main structure of the proposed hardware
implementation of genetic algorithm. To optimize the selection
process we use two searches that interact in a hierarchical manner,
namely global search and local search. The global search selects
some regions of initial population from entire search space
randomly, and then the selected regions which are consist ofFig. 1. The Pseudocode of the genetic algorithm.

Fig. 2. The proposed hardware architecture of genetic algorithm.

R. Faraji, H.R. Naji / Neurocomputing 128 (2014) 316–327 317



Download English Version:

https://daneshyari.com/en/article/408159

Download Persian Version:

https://daneshyari.com/article/408159

Daneshyari.com

https://daneshyari.com/en/article/408159
https://daneshyari.com/article/408159
https://daneshyari.com

