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a b s t r a c t

In this paper, an adaptive tracking control scheme is proposed for a class of switched nonlinear systems
with state and input unmodeled dynamics. The unmodeled dynamics are dealt with by introducing a
first-order filter and a dynamic signal. K-filters are used to estimate the unmeasured states, and the
dynamic surface control (DSC) technique is employed to construct the controller to avoid the explosion
problem of complexity. By choosing an appropriate common Lyapunov function, the boundedness of all
closed-loop signals is proved, and the tracking error can converge to a small neighborhood of zero in
finite time under arbitrary switchings. Finally, a simulation example is provided to show the feasibility
and validity of the proposed method.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Over the past years, switched systems have become an emer-
ging hot research topic due to their board applications in control
fields, such as spacecraft control [1] and vehicle control [2,3].
Switched system means a hybrid system that is composed of a
family of continuous-time and discrete-time subsystems and a
rule orchestrating the switching between the subsystems. Stabi-
lization and tracking are fundamental problems in the research
field of switched nonlinear systems [4–20]. Many significant
methods have been proposed to solve these problems, such as
common Lyapunov function method, multiple Lyapunov function
method and dwell-time approach [6,14,15,17,18,20]. For example,
common Lyapunov function method was employed to solve the
tracking control problem of switched nonlinear systems in strict
feedback form [14,17,18]. Adaptive tracking control for switched
nonlinear systems in lower-triangular form was investigated in [6]
by exploiting multiple Lyapunov function method. By using the
dwell-time approach, adaptive control for uncertain switched
nonlinear systems was studied in [15,20], where fuzzy sets [21,22]
and neural networks [19,23–25] are used to approximate
unknown nonlinearities.

As is well known, unmodeled dynamics widely exist in many
practical nonlinear systems, which can severely degrade the sys-
tem performance. Therefore, how to handle unmodeled dynamics

is a meaningful topic when one investigates the system stability.
Generally speaking, unmodeled dynamics include state unmo-
deled dynamics [5,6,15,20,25–32] and input unmodeled dynamics
[33–38]. State unmodeled dynamics denote the parts of invalid
modeling during the parameterization, a few approaches were
proposed to handle the adverse effects caused by them. In
[5,6,20,26,27,29–32], the state unmodeled dynamics were domi-
nated by introducing available dynamic signals. In [15,28], several
specific Lyapunov functions were selected to remove the state
unmodeled dynamics. On the other hand, input unmodeled
dynamics mean modeling errors or external disturbances act upon
the controller. In [33–38], a first-order filter was introduced to
generate a dynamic signal to overcome the input unmodeled
dynamics, which were of relative degree zero and minimum-
phase.

In recent years, finite-time stabilization and finite-time track-
ing have drawn considerable attention due to theirs practical
importance [1,16–18,39–42]. The aim of finite-time stabilization or
tracking is to design the control law to make system states or
tracking errors converge to the origin or the small neighborhood of
it in finite time. In [39], the problem of global finite-time stabili-
zation for a class of stochastic nonlinear systems was solved. In
[16–18], finite-time stabilization was studied for several classes of
switched nonlinear systems in strict feedback form. Finite-time
tracking and stabilization control for spacecraft systems were
respectively investigated in [1] and [40]. In [41,42], adaptive finite-
time tracking and stabilization control schemes were respectively
proposed for multi-agent and autonomous systems. However,
finite-time tracking control for switched nonlinear systems with
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unmodeled dynamics was not investigated until now, which
motivates the present study. The main contributions of this paper
are summarized as follows:

(i) An adaptive finite-time tracking control scheme is proposed
for a class of switched nonlinear systems with unmeasured
states and unmodeled dynamics. K-filters are used to estimate
the unmeasured states, and a filter is introduced to counteract
the influence of input unmolded dynamics. Moreover,
dynamic surface control (DSC) is used to overcome the
limitation of “explosion of complexity”.

(ii) Compared with previous results [29–31,33–35], the restric-
tions on the control coefficients and the reference signals are
relaxed. In this paper, the upper bound of control coefficient is
unknown and the second derivative of the reference signal is
not required to be bounded.

(iii) An output feedback controller and adaptive laws are con-
structed to guarantee that the tracking error can converge to a
small neighborhood of zero in finite time rather than in infi-
nite time presented in [20,29–31,33–35].

The rest of this paper is organized as follows. In Section 2, the
problem statement and preliminaries are given. In Section 3, sys-
tem parameterization and K-filters design are presented. In
Section 4, a control scheme is developed for switched systems by
using the DSC technique. Section 5 gives stability analysis. Simu-
lation results are presented in Section 6. Section 7 summarizes the
main conclusions.

Notations: Rþ denotes the set of all non-negative real numbers;
Rn denotes the real n-dimensional space; Rm�n denotes the real
m� n dimensional matrix; Rþ

odd9fqAR : q40 and q is a ratio of
odd integers}; ei; i¼ 1;2;…;n, denotes the n-dimensional vector
with the ith element being one, and other elements being all
zeros; K function denotes the set of all continuous functions which
are strictly increasing and vanishing at zero; K1 function denotes
the set of all functions which are class K functions and unbounded,
Ci stands for a set of functions with continuous ith partial deri-
vatives, J � J represents the Euclidean norm.

2. Problem statement and preliminaries

Consider the following switched nonlinear system with state
and input unmodeled dynamics:

_z ¼ qðz; yÞ;
_x1 ¼ x2þ f 1;σðtÞðyÞþΔ1;σðtÞðz; y; tÞ;
_x2 ¼ x3þ f 2;σðtÞðyÞþΔ2;σðtÞðz; y; tÞ;
⋮
_xρ ¼ xρþ1þ f ρ;σðtÞðyÞþΔρ;σðtÞðz; y; tÞþbm;σðtÞv;

⋮
_xn�1 ¼ xnþ f n�1;σðtÞðyÞþΔn�1;σðtÞðz; y; tÞþb1;σðtÞv;
_xn ¼ f n;σðtÞðyÞþΔn;σðtÞðz; y; tÞþb0;σðtÞv;
y¼ x1:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð1Þ

The minimal realization of input ummodeled dynamics is
represented as

_ξ ¼ AΔ;σðtÞðξÞþbΔ;σðtÞu;

v¼ CΔ;σðtÞðξÞþdΔ;σðtÞu;

(
ð2Þ

where x¼ ½x1; x2;…; xn�T ARn and uAR are the unmeasured system
states and input respectively. yAR is the measured system output;
σðtÞ : ½0; þ1Þ-M ¼ f1;2;…;mg is the switching signal and all
system states do not jump at each switching instant, t0 ¼ 0; For
any i¼ 1;2;…;n; k¼ 1;2;…;m, f i;kð�Þ is the unknown smooth

nonlinear function; zARn0 is the state unmodeled dynamics;
Δi;kðz; y; tÞ; i¼ 1;2;…;n, is the external dynamic disturbance, which
is an unknown smooth nonlinear function; qðz; yÞ is the unknown
continuous function; vAR is the unmeasured signal which acts
upon the nonlinear system; ξa0ARq is the input unmodeled
dynamic; AΔ;kð�Þ, bΔ;k are unknown vectors; CΔ;kð�Þ is an unknown
function and dΔ;k is an unknown constant. bi;ka0; i¼ 1;2;…;n, is
the unknown control coefficient; ρþm¼ n.

Remark 1. It should be emphasized that switched system (1) and
(2) does not have strict feedback or pure feedback structures
studied in [10,15–18]. Furthermore, due to the existence of the
state and input unmodeled dynamics, finite-time tracking control
for switched system (1) and (2) becomes more difficult.

The objective is to design a controller and adaptive laws for
switched system (1) and (2) such that the output y follows the spe-
cified desired trajectory yr, and the tracking error can converge to a
small neighborhood of zero in finite time under arbitrary switchings.

Assumption 1 (Zhang and Xia [29,30], Xia and Zhang [31]). The
external disturbance Δi;kðz; y; tÞ; i¼ 1;2;…;n, is an unknown
smooth function satisfying

Δi;kðz; y; tÞ
�� ��rϕi1;kðJzJ Þþϕi2;kðJyJ Þ;
where ϕi1;kð�ÞZ0 is an unknown increasing function and ϕi2;kð�ÞZ
0 is an unknown smooth function.

Assumption 2 (Xia et al. [33], Chen et al. [34,35]). The input
ummodeled dynamics (2) has relative degree zero, that is, dΔ;ka0,
and there exists an unknown positive constant Ck40 such that
CΔ;kðξðtÞÞ
�� ��rCk JξðtÞJ .

Assumption 3 (Zhang and Xia [29,30], Xia and Zhang [31]). The
system _z ¼ qðz; yÞ is exponentially input-state-practically
stable (exp-ISPS), that is, there exists a C1 function V0ðzÞ such that

α1ðJzJ ÞrV0ðzÞrα2ðJzJ Þ; ð3Þ

∂V0ðzÞ
∂z

qðz; yÞr�cV0ðzÞþγðJyJ Þþd; ð4Þ

where α1ð�Þ;α2ð�Þ and γð�Þ are the class K1 functions, c40; dZ0
are constants.

Assumption 4 (Xia et al. [33], Chen et al. [34,35]). For input
unmodeled dynamics (2), there exists a C1 function V ðξÞ satisfying
β1 JξJ

2rV ðξÞrβ2 JξJ
2;

∂V ðξÞ
∂ξ

AΔ;kðξÞr�2δ0;kV ðξÞ;

∂V ðξÞ
∂ξ

�����
�����
�����rβ3 JξJ ;

�����
where β140;β240;β340 and δ0;k40 are constants.

Assumption 5. The desired trajectory xr ¼ ½yr ; _yr�T AΩr is known,
where Ωr ¼ fxr : y2r þ _y2

r rD0g, and D0 is a constant.

Remark 2. In [10,29–31,33–35], the upper bounds of control
coefficients should be known, and the second derivative of track-
ing signals was required to be bounded, which are somewhat
strict. In this paper, we relax these restrictions, and do not require
any information about the second derivative of tracking signals.

Lemma 1 (Krstic et al. [26]). If V0 is a C1 function for a system _z ¼
qðz; yÞ such that (3) and (4) hold, then, for any constant cnAð0; cÞ, any
initial instant t0Z0, any initial condition z0 ¼ zðt0Þ; γ040, any
continuous function γ ðJyJ Þ satisfying γ ðJyJ ÞZγðJyJ Þ, there exist a
finite constant T0 ¼maxf0; lnðV0ðzÞ=γ0Þ=ðc�cnÞgZ0, a function Dðt0
; tÞZ0 and an unmeasured dynamic signal described by
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