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a b s t r a c t

Ultrasound imaging has been widely used for tumor detection and diagnosis. In ultrasound based
computer-aided diagnosis, feature representation is a crucial step. In recent years, deep learning (DL) has
achieved great success in feature representation learning. However, it generally suffers from the small
sample size problem. Since the medical datasets usually have small training samples, texture features are
still very commonly used for small ultrasound image datasets. Compared with the commonly used DL
algorithms, the newly proposed deep polynomial network (DPN) algorithm not only shows superior
performance on large scale data, but also has the potential to learn effective feature representation from
a relatively small dataset. In this work, a stacked DPN (S-DPN) algorithm is proposed to further improve
the representation performance of the original DPN, and S-DPN is then applied to the task of texture
feature learning for ultrasound based tumor classification with small dataset. The task tumor classifi-
cation is performed on two image dataset, namely the breast B-mode ultrasound dataset and prostate
ultrasound elastography dataset. In both cases, experimental results show that S-DPN achieves the best
performance with classification accuracies of 92.4071.1% and 90.2872.78% on breast and prostate
ultrasound datasets, respectively. This level of accuracy is significantly superior to all other compared
algorithms in this work, including stacked auto-encoder and deep belief network. It suggests that S-DPN
can be a strong candidate for the texture feature representation learning on small ultrasound datasets.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Ultrasound imaging is very commonly used for tumor detection
and diagnosis in clinical practice. Ultrasound-based computer-
aided diagnosis (CAD) for tumor diseases provides an effective
decision support and second opinion tool for radiologists [1].

Feature representation plays an essential role in ultrasound-based
CAD [1]. Texture information is among the most commonly used
features in ultrasound image [1,2]. Numerous texture feature
extraction methods, such as wavelet transform [1,2], multiscale
geometric analysis methods [3–5], fractal theory [1,6], and other
statistical descriptors [1,2,7,8], have been used for ultrasound images.

As the most popular method for data representation learning,
deep learning (DL) has gained its good reputation in computer
vision and pattern recognition [9–12]. After DL was first introduced

in 2006 by Hinton [14,15], many DL algorithms have been proposed,
such as stacked auto-encoder (SAE), restricted Boltzmann machine
(RBM), deep belief network (DBN), and convolutional neural net-
work (CNN) [9–13]. DL has been successfully applied to the field of
medical image analysis, such as medical image classification,
detection and segmentation [15–23].

DL also has been effectively used for ultrasound image pro-
cessing in recent years. Carneiro et al. proposed a DBN-based
algorithm to segment left ventricle of the heart from ultrasound
images [24], and they also proposed to combine multiple dynamic
models and deep neural network for tracking the left ventricle
endocardium in ultrasound image sequences [25]. Wu et al.
employed the DBN algorithm for the classification of benign and
malignant focal liver lesions based on contrast enhanced ultra-
sound (CEUS) video [26]. Fasel et al. also used DBN to auto-
matically extract tongue contours on a large scale ultrasound
image dataset [27]. Menchon-Lara and Sancho-Gomez applied AE
to learn feature for the segmentation of common carotid artery in
longitudinal B-mode ultrasound images [28].
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The great success of DL is based on the fact that a large amount
of training samples are required to achieve excellent learning
performance, and most commonly used DL algorithms, such as
SAE, RBM, DBN and CNN, suffer from the issue of a small sample
dataset. However, in the field of machine learning based medical
image analysis, the medical datasets usually have small training
samples, because labeling is generally expensive and time con-
suming, which results in limited ground truth data [29,30]. In
order to successfully apply DL algorithms to medical images, the
local patches from 2D or 3D images, sequence images or video are
usually selected as samples so as to enlarge the training set from
small dataset with small size subjects [23,24,26].

It is worth noting that the local patch based feature is not the
preferred choice for ultrasound image, as it is found that local
patch-level features do not always work as well as in other med-
ical imaging modalities. For example, the breast tumor in B-mode
ultrasound images reflects a lower level of echoes than sur-
rounding tissues, and appears relatively darker (hypoechoic) [31].
In this case, local patch is only able to provide less information.
Therefore, it is the texture features extracted from the whole
image rather than the local patch based features, which are very
commonly used in ultrasound image, especially for a small dataset.
It is still a challenge task to extract and represent discriminative
feature from small ultrasound datasets for tumor detection and
classification.

The deep polynomial network (DPN) is a novel DL algorithm,
which is devoted to learn polynomial predictors with a deep
network architecture to provide a good approximate basis for the
values attained by all polynomials of bounded degree [32]. DPN
does not rely on complicated heuristics, and is easy to be imple-
mented with simple parameters. The experimental results on
some commonly used large-scale image datasets show that DPN
have comparable or even better performance compared with DBN
and SAE algorithms [32]. It is worth noting that the proper way of
building the deep networks in DPN allows data representation
learning on finite samples in a compact way. From this aspect, DPN
has the potential to be applied for learning feature representation
from small ultrasound image dataset.

In order to improve the performance of feature representation
in DL, it has been observed that layer-wise stacking of feature
extraction can yield better representations [10]. Motivated by the
successful application of stack method in DL, such as DBN (a stack
of RBMs) [12], SAE [33], stacked predictive sparse coding [34], and
tensor deep stacking networks [35], we believe that DPN can also
be stacked up to build a much deeper structure, because the
output layer in the current DPN is the concatenated feature vector
of all the features from different layers, which can be further
learned to improve the representation ability.

In this work, we propose a stacked DPN (S-DPN) algorithm and
then apply it to learn texture feature representation for ultrasound
image based tumor classification. The main contributions of this
work are twofold: (1) DPN is employed to improve the repre-
sentation performance of the initially extracted texture feature for
small ultrasound dataset and (2) the S-DPN algorithm is proposed
to further improve the deep learning ability of the original DPN.

2. Stacked deep polynomial networks

2.1. Deep polynomial network algorithm

The original DPN algorithm is introduced here, whose network
architecture is shown in Fig. 1 [32].

Let X¼{x1, x2, …, xm}ARm�d be a set of m training samples,
where xi is a d-dimensional sample. When constructing the first

layer network in DPN, the value set from degree-1 polynomial
(linear) function over the training samples is given by

ð⟨w 1 x1½ �⟩;…;⟨w; 1 xm½ �⟩� Þ:wARdþ1� ð1Þ
which is the (dþ1)-dimensional linear subspace of Rm. The sin-
gular value decomposition (SVD) is then used to build a basis,
which thus generate the linear independent set of vectors

wj; 1 x1½ �� �
;…; wj; 1 xm½ �� �� �� �dþ1

j ¼ 1: Moreover, the consequent linear
transformation (specified by a matrix W) will map [1 X] into the
constructed basis, where 1 is the all-ones vector. The columns inW
define the dþ1 linear functions forming the 1st-layer in DPN, in
which the j-th node of first layer is the function by

n1
j xð Þ ¼ Wj; 1 X½ �� � ð2Þ

where ðn1
j x1ð Þ;…;n1

j xmð ÞÞdþ1

j ¼ 1
forms a basis for all values obtained by

degree-1 polynomials over training samples. Define F1 as am� (dþ1)
matrix, then F1i;j ¼ n1

j ðxiÞ means that the columns in F1 are the vectors
of this set. A one-layer network is then finished, whose outputs span
all values by the linear functions on the training samples.

It has been proved that any degree t polynomial can be written
as [32]X
i

gi xð Þhi xð ÞþkðxÞ ð3Þ

where gi xð Þ is the degree-1 polynomial, hi xð Þ is the degree-(t�1)
polynomial, and kðxÞ is a polynomial of degree at most (t�1). The
nodes in the 1st-layer network span all degree-1 polynomials, and
therefore, they also span the polynomials gi, hi, and k. As a result,
any degree-2 polynomial can be given by
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where α is a scale factor. Eq. (4) indicates that the vector of values
obtained by any degree-2 polynomial span the vector of values

Fig. 1. Schematic diagram of the network’s architecture in a degree-4 DPN with
each ni representing a layer of nodes. Here, (þ) means a layer of nodes, which
calculate functions of the form n zð Þ ¼P

i
wizi , while other layers consist of nodes

that compute functions of the form n zð Þ ¼ n zi 1ð Þ; zi 2ð Þ
� �� �¼wzið1Þzið2Þ .

J. Shi et al. / Neurocomputing 194 (2016) 87–9488



Download English Version:

https://daneshyari.com/en/article/408297

Download Persian Version:

https://daneshyari.com/article/408297

Daneshyari.com

https://daneshyari.com/en/article/408297
https://daneshyari.com/article/408297
https://daneshyari.com

