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a b s t r a c t

In this paper, an interventional consensus problem is formulated mathematically with signed graph
theory and dynamical system theory. The interaction network associated with a multi-agent system is
modeled by a signed graph (called coopetition network in sequel) and the dynamics of each agent is
described by a high order differential equation with a nonlinear unknown time-varying disturbance.
Then a distributed interaction law is designed for each agent to drive all agents belonging to two
competitive subgroups to reach a bipartite consensus on a reference signal, which is generated by an
exogenous system (called leader in sequel). Simultaneously, some neural network (NN) based adaptive
estimators are proposed to estimate the nonlinear disturbances in the agent dynamics. The convergence
of the bipartite consensus is analyzed by using a Lyapunov function method. Finally, some simulation
results are presented to demonstrate the formation of the bipartite consensus.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recent years have witnessed that collective behavior emerging
within a group of autonomous agents (called multi-agent system
as well) attracts a lot of attention in different fields, including
mathematics, physics, computer science, biology, and control
engineering [1–5]. The research on collective dynamics of multi-
agent systems not only helps in better understanding the emer-
gence mechanism of complex systems, but also benefits the
applications to society, economics and engineering.

For cooperative multi-agent systems, consensus problem has
been extensively investigated, where all agents reach an agree-
ment through local coordinative interactions with neighbors [6–8].
However, cooperation and competition are a pair of coexisting
relationship between agents in general multi-agent systems. For
instance, in the field of biology, [9] found that animals cooperate
to look for food or to watch for predators, but compete when
resources become limited. In the field of market economics, agents
may compete with some of their neighboring agents [10]. It is
common to find duopolistic regimes in economic multi-agent
systems, where all the agents producing a same product or pro-
viding a similar service are often easily split into competitive
camps. In the field of social networks, agents can be friends or
rivals in contexts like election, games, conflicts, etc. [11]. In the

field of game theory, players are divided into two competing teams
to maximize their own payoffs. A coopetitive game model was
proposed in [12] by virtue of game theory for agents, which
cooperate and compete simultaneously in the green economic
environment.

Very recently, in the field of system science, an interesting
question arises: How the collective dynamics evolves when agents
cooperate and compete simultaneously? Altafini proposed a dyna-
mical model by means of the monotone dynamical system theory
for each agent and built the cooperative-competitive interaction
network associated with the multi-agent system via the signed
graph theory [13]. In sequel, the cooperative-competitive interac-
tion network is called coopetition network. Further, the multi-agent
dynamics on a coopetition network was described in [14] by a first-
order neighbor-based dynamics and a particular collective behavior,
namely bipartite consensus, was investigated by using the notation
of structural balance. Herein, the bipartite consensus means that all
agents reach a final state with identical magnitude but opposite
sign. The bipartite consensus problem was also investigated in [15]
when the coopetition network is a directed signed graph with a
spanning tree. A bipartite consensus problem was considered for a
second-order multi-agent system with unknown disturbances in
[16]. In [17], a bipartite consensus problem was investigated for a
first-order nonlinear multi-agent system with switching network.
When the agent dynamics is described by a linear time-invariant
system, a static state-feedback control was designed in [18] to
guarantee the bipartite consensus.
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For dynamical systems with exogenous disturbances, some
advanced control strategies have been proposed for linear or
nonlinear systems, deterministic, fuzzy or even stochastic systems.
For example, some static output feedback H1 control protocols
were designed for fuzzy affine nonlinear systems [19] and non-
linear hyperbolic PDE systems [20]. An H1 filter was designed for
Markovian jump linear systems with time-varying delay and par-
tially accessible mode information in [21]. An adaptive neural
network (NN) control was proposed to compensate the network-
induced delays and packet dropouts for double-layer systems in
[22]. For cooperative multi-agent systems with unknown dis-
turbances, some advanced consensus controls have also been
developed in the literature. For example, a dynamic output feed-
back control was designed for first-order multi-agent systems
with bounded disturbances in [23]. An adaptive observer-based
tracking control was proposed for a second-order leader-follower
system with unknown nonlinear dynamics in [24]. A distributed
observer-based consensus tracking control was designed for a
second-order nonlinear multi-agent system with a directed swit-
ched network in [4]. When a first-order agent dynamics had dis-
turbances and uncertainties, a robust adaptive consensus control
was designed for each agent by using RBF neural network in [25].
Some adaptive synchronization controllers were proposed in [26]
and [27] to deal with the unknown nonlinear dynamics in first- or
second-order multi-agent systems with the help of neural network
approximation method. A similar adaptive neural control techni-
que was adopted in [28] for a high-order multi-agent system.

In this paper, we focus on the bipartite consensus for a high-
order linear multi-agent system on a coopetition network. One
basic problem to be addressed is to analyze the formation of
bipartite consensus when the agent dynamics suffers from
unknown time-varying disturbances. As mentioned above, even
though some results have been obtained for bipartite consensus of
multi-agent systems, however, to the authors' best knowledge,
there exist few related studies to consider bipartite consensus of
high-order multi-agent systems with unknown exogenous dis-
turbances. Thus, the contribution of the paper can be twofold. First
of all, an exogenous system is introduced to regulate the final
bipartite consensus of the multi-agent system. All agents can thus
reach bipartite consensus on any desired reference. Secondly,
some adaptive neural estimators are proposed to estimate the
unknown disturbances. Furthermore, based on the adaptive esti-
mators, a distributed interaction law is designed for each agent to
guarantee the interventional bipartite consensus. The convergence
of the closed-loop multi-agent system is analyzed by using a
Lyapunov function method.

The remainder of this paper is organized as follows. In Section 2,
the interventional bipartite consensus problem is formulated and
some notations in signed graph theory are presented. In Section 3, a
distributed control law together with adaptive neural estimators is
proposed for each agent. Then the convergence analysis of the
multi-agent system with the proposed control law is analyzed by
using a Lyapunov function approach in Section 4. Some simulation
results are given to validate the effectiveness of the proposed
adaptive bipartite control in Section 5. Finally, some concluding
remarks and future research topics are given in Section 6.

Throughout this paper, a vector is denoted by colð�Þ; the abso-
lute value of a real number is denoted by j � j ; the Euclidean
(Frobenius) norm of a vector (matrix) is denoted by J � J ðJ � JF Þ;
the trace of a matrix is represented by trð�Þ; a diagonal matrix is
denoted by diagð�Þ; the maximum (minimum) singular value of a
matrix is σ ð�Þ σ ð�Þ� �

. Additionally, signð�Þ denotes the sign function.

2. Problem formulation

2.1. Some preliminaries

We use a signed graph to model a coopetition network. A
signed graph G¼ ðV; E;AÞ, where V ¼ f1;…;Ng is the set of the
nodes of agents, EDV � V is the set of the edges, and A is the
adjacency matrix of the signed graph. In this paper, we assume
that A is a ð�1;0;1Þ-matrix. The element aij of A is attached to the
edge ði; jÞAE. If aija0, then we say that there must be an edge
connecting node i and node j. If aij40, then the interaction
between node i and node j is cooperative. In the same way, if
aijo0, the interaction is competitive. We define aii ¼ 0 for all iAV.
A signed Laplacian matrix associated with the graph G is denoted
by L and defined by

L¼D�A; ð1Þ
where D¼ diagðd1; d2;…; dNÞ; di ¼

P
jANi

jaij j , Ni ¼ fjj ði; jÞAEg is the
neighbor set of node i. If another node, labeled 0, is added into G,
then one has the augmented graph G ¼ ðV ; E Þ, where
V ¼ f0;1;…;Ng; EDV � V . Denote the weight between the node
0 and the node i as biZ0. A leader adjacency matrix is defined by a
diagonal matrix B¼ diagðb1;…; bNÞARN�N . A path with length h is
made up of edges with the form ði0; i1Þ; ði1; i2Þ;…; ðih�1; ihÞ for dis-
tinct nodes. A cycle is a path, which starts and ends at the same
node. A tree has exactly one parent for every node except the root.
A spanning tree is a special tree, where there exists at least one
path from the root to any other nodes in the graph. Generally, a
cycle can include both positive and negative edges in a signed
graph. We say that a cycle is positive, if the product of the weights
aij in the cycle is positive; and negative, otherwise.

Structural balance is a very important concept in the signed
graph theory [29,14]. We say that a signed graph is strongly
structurally balanced, if all of the cycles in the signed graph are
positive. If at least one of the cycles is negative, then we say the
graph is structurally unbalanced. If there is no cycle in a signed
graph, then we say the graph is vacuously balanced [11]. A signed
graph is called structurally balanced [15] when it is strongly
structurally balanced or vacuously balanced. Obviously, if a signed
graph G is structurally balanced, then the node set V can be divi-
ded into two subgroups V1 ¼ f1;…;N0g and V2 ¼ fN0þ1;…;Ng, the
interactions belonging to the same subgroup are cooperative,
while the interactions between them are competitive. Therefore,
the adjacency matrix associated with the signed graph G has the
following block form by appropriately reordering the agents

A¼
A11 A12

A21 A22

 !
where A11 ¼ AT

11ARN0�N0 , A12 ¼ AT
21ARN0�N�N0 , and A22 ¼ AT

22A
RN�N0�N�N0 . It is noted that A11 and A22 are nonnegative sub-
matrices, while A21 is a nonpositive submatrix.

When a coopetition network G is structurally balanced, it has
two antagonistic subnetworks with node sets V1 and V2. In order
to characterize the relationships among agents belonging to the
two subnetworks, a gauge transformation [14,15] is defined by the
following diagonal matrix

S¼ diagðs1;…; sNÞARN�N ; ð2Þ
where the diagonal entry si¼1 for iAV1 and si ¼ �1 for iAV2. It is
not difficult to show that S�1 ¼ S¼ ST . From [15], we have known
that

SAS¼
A11 �A12

�A21 A22

 !
;

which means that, through the gauge transformation, the matrix A
is similar to a nonnegative adjacency matrix.
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