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a b s t r a c t

In this paper, we develop a novel optimal tracking control scheme for a class of nonlinear discrete-time
Markov jump systems (MJSs) by utilizing a data-based reinforcement learning method. It is not practical
to obtain accurate system models of the real-world MJSs due to the existence of abrupt variations in their
system structures. Consequently, most traditional model-based methods for MJSs are invalid for the
practical engineering applications. In order to overcome the difficulties without any identification
scheme which would cause estimation errors, a model-free adaptive dynamic programming (ADP)
algorithm will be designed by using system data rather than accurate system functions. Firstly, we
combine the tracking error dynamics and reference system dynamics to form an augmented system.
Then, based on the augmented system, a new performance index function with discount factor is for-
mulated for the optimal tracking control problem via Markov chain and weighted sum technique. Neural
networks are employed to implement the on-line ADP learning algorithm. Finally, a simulation example
is given to demonstrate the effectiveness of our proposed approach.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Research on Markov jump systems (MJSs) has received sig-
nificant attention due to its extensive applications among the
network control systems, manufacturing systems and power sys-
tems [1,2]. For these systems, abrupt variations usually occur in
their system structures when there exist subsystem interconnec-
tion variations and sudden environmental disturbances. Due to the
powerful modeling capability of MJSs, the models of these systems
could be expressed and formulated by MJSs [3]. Although there
have been diversities of studies on MJSs, such as synchronization
[4,5], robust control [6,7] and stability analysis [8,9], there are still
few works concerning with the optimal control issue, which can
be generally divided into two categories: one is optimal regulation
and the other one is optimal tracking [10]. In addition, most
existing results depend on the accurate system functions in the
design of controllers. However, it is infeasible to obtain the com-
plete knowledge of system models at each time step in the real-
world applications owing to the existence of the inherent sto-
chastic property in MJSs. Therefore, it would be interesting and

challenging to find out a method to investigate the optimal issue
for MJSs under mode-free conditions.

Reinforcement learning (RL) [11–15], which is studied from
computational intelligence and machine learning, has the ability to
let an agent learn an optimal control policy by utilizing the responses
from unknown environment. As a core branch of RL methods,
adaptive/approximation dynamic programming (ADP) has provided
a successful way to achieve optimal control in a stochastic process
[16], which motives our research. ADP brings the advantages of
adaptive and optimal control together to address different optimal
control issues, such as optimal tracking control [10,17–19], optimal
control with constrained control input [20–23], optimal control with
time-delays [24–26], optimal control for zero-sum [27,28] and non-
zero-sum games [29,30], and optimal control applied on unknown
nonlinear systems [31–34] and multi-agent systems [35–39].

This paper proposes a data-based ADP method to solve the
optimal tracking control problem (OTCP) for nonlinear discrete-time
(DT) MJSs with completely unknown dynamics. Firstly, an aug-
mented system composed of tracking error dynamics and reference
system dynamics is introduced for reformulating the issue. According
to Markov chain, we transform the multiple-objective optimal pro-
blem for each subsystem of MJS into a single-objective one for the
whole MJS by utilizing the weighted sum technique. Then, we
introduce the policy iteration algorithm and discuss the value of
discount factor in the stability analysis. Finally, based on the temporal
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difference learning method, a gradient-descent on-line algorithm is
designed only requiring the knowledge of system data. Two neural
networks (NNs), critic NN and actor NN, are employed to implement
the proposed algorithm and approximate the performance index and
control policy, respectively. Note that, ADP can be classified into five
groups in general, namely, heuristic dynamic programming (HDP),
dual heuristic dynamic programming (DHP), globalized dual heuristic
dynamic programming (GDHP), action dependent heuristic dynamic
programming (ADHDP) and action dependent dual heuristic dynamic
programming (ADDHP). Our proposed approach is most relevant to
ADHDP. As a result, the main contributions of this paper can be
summarized as follows: Firstly, based on the augmented system
which contains tracking error dynamics and reference system
dynamics, the optimal tracking control problem for DT MJSs is
reformulated by using Markov chain and weighted sum technique.
To the best of our knowledge, a novel data-based ADP algorithm is
proposed to solve this issue with completely unknown system
dynamics for the first time. Secondly, neural networks are used to
facilitate the implementation of the on-line ADP algorithm. The
proposed RL algorithm iteratively computes the control policy and
performance index function through the reinforcement signal from
the completely unknown external environment and tries to reinforce
the control policy to minimize the future performance index. During
the learning procedure, only the system data is required rather than
the accurate system functions, whereas other previous works [4–9]
investigated the issue with known system dynamics. Thirdly, unlike
the traditional identification approaches [31–33], the ADP algorithm
is an adaptive learning process, which can still find out the optimal
control policy adaptively even when the system parameters change
and successfully circumvent the identification errors.

The rest of this paper is organized as follows. In Section 2, an
augmented system and a new performance index with discount
factor are established, and then the OTCP for DT MJSs is refor-
mulated. In Section 3, the policy iteration algorithm is introduced
and the value of discount factor is discussed. A novel data-based
on-line algorithm is designed through gradient-based methods
and implemented by utilizing two NNs in Section 4. Section 5
presents a simulation example to show the effectiveness of our
proposed approach. Finally, conclusions are drawn in Section 6.

2. Problem formulation

Consider a class of DT MJSs as below:

xðkþ1Þ ¼ f iðxðkÞÞþgiðxðkÞÞuðkÞ ð1Þ
where xðkÞARn denotes the state; uðkÞARm is the control input;
the system drift dynamics f iðxðkÞÞARn and the system input
dynamics giðxðkÞÞARn�m are both considered to be unknown; i
represents the notation of the discrete-time Markov chain σðkÞ� �

,
which denotes the active mode at the kth time step and belongs to
a finite set ρ¼ f1;2;⋯; lg, where l is the total number of the
jumping modes.

Assumption 1. f ið0Þ ¼ 0 and f iðxðkÞÞþgiðxðkÞÞuðkÞ is Lipschitz con-
tinuous on a compact set Ω containing the origin.

Assumption 2. The system (1) is controllable, namely, there exists
a continuous control on Ω which stabilizes the system.

The transition probability matrix for the DT MJS can be defined
as

P ¼
π11 ⋯ π1l

⋮ ⋱ ⋮
πl1 ⋯ πll

2
64

3
75ARl�l ð2Þ

where πab ¼ Pr σðkþ1Þ ¼ b σðkÞ ¼ a
��� �

for 8a; bAρ and
Pl

b ¼ 1 πab ¼
1 for 8aAρ.

Define the reference system which generates the desired
tracking trajectory as follows:

xdðkþ1Þ ¼ hðxdðkÞÞ ð3Þ

where xdðkÞARn is the tracking objective state and hðxdÞARn

denotes the command generator function with hð0Þ ¼ 0. Therefore,
the tracking error can be given by

edðkÞ ¼ xðkÞ�xdðkÞ: ð4Þ

Remark 1. The existing works concerning about the optimal
tracking control problems all require the information of system
dynamics [10,17–19]. Especially for MJSs which are essentially
stochastic systems, it is infeasible to obtain the accurate system
functions at each time step. Thus, for the completely unknown
systems, these results are invalid. In this paper, in order to solve
the OTCP for MJSs without the requirement of system dynamics,
we present a new formulation for this issue by utilizing the idea of
augmented system and discounted performance function in [10].

Combining (1) and (3) yields the tracking error dynamics

edðkþ1Þ ¼ f iðxðkÞÞ�hðxdðkÞÞþgiðxðkÞÞuðkÞ: ð5Þ

Let XðkÞ ¼ eTdðkÞ xTdðkÞ
� �T be the state of the augmented system.

Then, bringing together (3) and (5) yields the dynamics of aug-
mented system

Xðkþ1Þ ¼ FiðXðkÞÞþGiðXðkÞÞuðkÞ ð6Þ

where FiðXðkÞÞ ¼ f iðedðkÞþ xdðkÞÞ�hðxdðkÞÞ
hðxdðkÞÞ

h i
and GiðXðkÞÞ ¼ giðedðkÞþxdðkÞÞ

0

h i
.

The augmented system (6) can be viewed as a new formulated
MJS, and we define the performance index function for each
subsystem mode as follows:

JiðXðkÞÞ ¼
X1
t ¼ k

αt�k XT ðtÞQiXðtÞþuT ðtÞRiuðtÞ
h i

¼ XT ðkÞQiXðkÞþuT ðkÞRiuðkÞþαJiðXðkþ1ÞÞ ð7Þ

where 0oαr1 is a discount factor; Qi ¼ Hi
0

0
0

� �
with Hi40 and

Ri40 being the weight matrices for 8 i¼ 1;2;…; l.

Remark 2. It is essential to employ a discounted performance
function when dealing with the optimal tracking problems. This is
mainly because the desired tracking trajectory generally does not
go to zero in most real-world applications, then the performance
index function would be infinite without a discount factor as the
control policy contains a part which depends on the desired
tracking trajectory, i.e., uT ðtÞRiuðtÞ would not go to zero as time
goes to infinity.

According to the transition probability matrix (2), we can bring
together the performance index functions (7) of all the subsystem
modes to act as that of the whole MJS as below:

V1ðXðkÞÞ ¼ π11J1ðXðkÞÞþπ12J2ðXðkÞÞþ⋯þπ1lJlðXðkÞÞ
V2ðXðkÞÞ ¼ π21J1ðXðkÞÞþπ22J2ðXðkÞÞþ⋯þπ2lJlðXðkÞÞ
⋮
VlðXðkÞÞ ¼ πl1J1ðXðkÞÞþπl2J2ðXðkÞÞþ⋯þπllJlðXðkÞÞ

8>>>><
>>>>:

ð8Þ

From (8), it can be observed that the optimal tracking problem
for MJS is converted into a multi-objective optimization problem.
In order to simplify the complexity of the problem, we employ the
weighted sum technique and transform the multi-objective opti-
mization problem into the single-objective one by introducing the
weight vector λ¼ ½λ1 λ2⋯λl�T . Hence, the performance index
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