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a b s t r a c t

It is well known that the Leave-One-Out Cross-Validation (LOO-CV) is a highly reliable procedure in
terms of model selection. Unfortunately, it is an extremely tedious method and has rarely been deployed
in practical applications. In this paper, a highly efficient Leave-One-Out Cross-Validation (LOO-CV) for-
mula has been developed and integrated with the popular Regularized Extreme Learning Machine
(RELM). The main contribution of this paper is the proposed algorithm, termed as Efficient LOO-CV-based
RELM (ELOO-RELM), that can effectively and efficiently update the LOO-CV error with every regular-
ization parameter and automatically select the optimal model with limited user intervention. Rigorous
analysis of computational complexity shows that the ELOO-RELM, including the tuning process, can
achieve similar efficiency as the original RELM with pre-defined parameter, in which both scale linearly
with the size of the training data. An early termination criterion is also introduced to further speed up
the learning process. Experimentation studies on benchmark datasets show that the ELOO-RELM can
achieve comparable generalization performance as the Support Vector Machines (SVM) with significantly
higher learning efficiency. More importantly, comparing to the trial and error tuning procedure
employed by the original RELM, the ELOO-RELM can provide more reliable results by the virtue of
incorporating the LOO-CV procedure.

& 2016 Published by Elsevier B.V.

1. Introduction

A simple and fast learning algorithm for the Artificial Neural
Networks (ANN) named Extreme Learning Machine (ELM) has
been proposed in recent years [1]. Its salient feature is that the
parameters of its hidden neurons can be randomly generated
instead of being exhaustively tuned, thus saving a great deal of
computing resources. It has been shown to achieve superior per-
formance than traditional learning algorithms such as Back-
propagation (BP) [2] and Support Vector Machines (SVM) [3]. In
addition, the ELM also overcomes common issues faced in the
ANN, such as defining the learning rate, number of epochs, stop-
ping criterion and running into local minima [1,4,5]. Because of
these appealing features of the ELM, it has been successfully and
widely implemented [6–10]. The differences between the ELM and
other ANNs based on randomness feature are elaborated in [9,11].

Various approaches have been used to enhance the perfor-
mance of the original ELM, including ensemble approaches, where
a group of ELMs are generated and the final output is combination
of individual ELM results [12–16]; growing and pruning

approaches, where the size of the ELM hidden layer grows or is
pruned according to different criteria [5,4,17,18]; optimization
approaches, where the parameters are adjusted using various
techniques [19]; parsimonious structure, where the size of the
hidden layer is pruned and restricted to achieve better general-
ization performance [20,21].

Recently, the combination of ELM with regularization methods
to form the Regularized ELM (RELM) has become increasingly
popular. The idea is to restrict the norm of the output weights of
the ELM so that the RELM can resolve the ill-conditioning issue of
the hidden layer matrix, where the ELM fails to achieve. Among
the regularization methods, ridge regression is the most com-
monly used in the RELM [3,22–26]. Others including lasso and
elastic net [27,28] are also used [29]. Apart from ensuring the
invertibility of the hidden layer matrix during the learning pro-
cedure, regularization is also an effective way to resolve the over-
fitting problem by sacrificing the bias so as to reduce the estima-
tion variance, and thus may improve the overall generalization
performance [3,25,30]. In spite of many advantages, several open
issues remain to be solved for the ELM algorithm. One such issue is
the determination of optimal parameters for a specific task. In the
RELM, the ridge parameter C plays the most important role as long
as the size of the hidden layer L is large enough [3,31]. However,
the parameter C in the original RELM algorithm is usually searched
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through a trial and error manner. This method is straightforward,
but requiring computational and human efforts and cannot guar-
antee the stability or near optimal performance.

Several ELM variants have been proposed in recent years to
circumvent this problem. An extended localized generalization
error model is used in [32], where the authors also mentioned that
Cross-Validation (CV) is a more reliable, yet time-consuming
approach. Another method called risk-estimation-based criterion
Cp is used in [33]. However, a meaningful Cp depends on a reliable
estimation of the error variance σ2, which cannot be guaranteed
[33]. It is possible that the selected model will be the one where Cp
is a particularly severe underestimate of the testing error, there-
fore Cp cannot completely guard against overfitting.

Optimally Pruned ELM (OP-ELM) uses the Leave-One-Out CV
(LOO-CV) error as the selection criterion for a suitable architecture
[34], which is nearly unbiased if the training and testing sets are
drawn from the same distribution. To address the slow execution
speed of the LOO-CV, the Allen's PREdiction Sum of Squares
(PRESS) statistics of [30] is utilized in the OP-ELM, which provides
a direct and exact formula for the calculation of the LOO-CV error
for linear models like the ELM. However, the PRESS formula is used
for every newly added hidden node, which involves computing the
inverse of a L� L matrix, and thus can still be computationally
intensive. Furthermore, no regularization is implemented in the
OP-ELM.

In this paper, a novel Efficient LOO-CV-based RELM (ELOO-
RELM) is proposed. Similar to the OP-ELM, the LOO-CV error is
used as the architecture's selection criterion, and the PRESS for-
mula is employed to compute it. However, instead of applying the
PRESS formula to evaluate every single ridge parameter C, the
Singular Value Decomposition (SVD) is used to achieve efficient
LOO-CV error calculation (economy size decomposition [35]). To
further improve the learning efficiency of the ELOO-RELM, a
sparse þ instensive search strategy and dynamic termination
criteria η are proposed. The parameters in the ELOO-RELM are
carefully designed so that the default values can handle many
cases (only default parameters are used for the ELOO-RELM in the
simulations presented in this paper). Additional tuning guidelines
are given so that the user tuned parameters have limited impact
on the final generalization performance of the ELOO-RELM.

The rest of this paper is organized as follows: Section 2 intro-
duces the preliminary theory of ELM, RELM, LOO-CV and the
PRESS formula. Section 3 describes the calculation procedure of
the LOO-CV error and introduces the ELOO-RELM. Performance
evaluations on benchmark datasets are carried out in Section 4.
Conclusions are drawn in Section 5.

2. Preliminaries

The ELM is a novel paradigm for single hidden layer feedfor-
ward neural networks [2]. Its salient feature is that the input
weights and hidden biases are randomly chosen instead of being
exhaustively tuned, and the output weights are analytically
determined using the Moore–Penrose generalized pseudoinverse
[3]. The ELM aims to achieve the smallest training error as well as
the smallest norm of output weights. Consequently, it has been
reported to provide better generalization performance with much
faster learning speed, and avoid traditional ANN issues such as
specifying learning rate, stopping criterion, number of training
epochs, and running into local minima [1,4,5]. In this section, the
preliminaries of the ELM, its variant RELM and the LOO-CV are
introduced.

2.1. Original ELM

The structure of the original ELM is shown in Fig. 1. For the sake
of simplicity, the usual setup of the ELM for regression with a
single output is considered in this paper.

The output t with L hidden nodes can be represented by

t ¼
XL
i ¼ 1

βigiðxÞ ¼
XL
i ¼ 1

βiGðωi; bi; xÞ ¼Hβ ð1Þ

where x;ωiARd, gi denotes the ith hidden node output function
Gðωi; bi;xÞ and H and β are the hidden layer output matrix and
output weight matrix respectively. For N distinct samples ðxj; tjÞ,
j¼ 1;…N, Eq. (1) can be rewritten as

Hβ¼ T ð2Þ

H¼
h1

⋮
hN

2
64

3
75¼

hðx1Þ
⋮

hðxNÞ

2
64

3
75¼

Gðω1; b1; x1Þ ⋯ GðωL; bL; x1Þ
⋮ ⋯ ⋮

Gðω1; b1; xNÞ ⋯ GðωL; bL; xNÞ

2
64

3
75
N�L

ð3Þ

β¼
β1

⋮
βL

2
64

3
75
L�1

; T¼
t1
⋮
tN

2
64

3
75
N�1

ð4Þ

where T is the target matrix.
Since the input weights of its hidden neurons ðωi; biÞ can be

randomly generated instead of being exhaustively tuned [3], the
only parameter that needs to be calculated in the ELM is the
output weight matrix β, which can be easily done through the
Least Squares Estimate (LSE)

β¼H†T ð5Þ
where H† is the Moore–Penrose generalized inverse of matrix H,
which can be calculated through orthogonal projection, i.e.,
H† ¼ ðHTHÞ�1HT .

The procedure of designing an ELM is as follows:

1. Randomly generate the hidden neuron parameters ðω;bÞ.
2. Calculate the hidden-layer output matrix H using Eq. (3).
3. Calculate the output weights β using Eq. (5).

2.2. Regularized ELM

Although several regularization methods have been used in the
RELM, the ridge regression of [36] is employed in the proposed
algorithm. It is one of the most common regularization methods
used in the RELM as well as in the regularized regression problem.
It also has a relatively simple format and therefore can be

Fig. 1. ELM structure.
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