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a b s t r a c t

Stereo matching is one of the most important and fundamental topics in computer vision. Encouraging
self-similar pixels to be assigned to the same label has been proved to be effective for stereo. A typical
way of taking advantage of self-similarity is performing a color segmentation on the image and moti-
vating the pixels within each segment to share an identical label. However, some cases cannot be
handled by image segmentation, such as the pixels in disconnected regions. This paper proposes a stereo
method based on the assumption, that a 3D scene is a collection of a few smooth surfaces and a few
classes of reflective materials, such that the 3D points belonging to an identical material are likely to lie
on a small number of surfaces and the 3D points lying on a single surface belong to a few classes of
reflective materials. Each material is expected to have specific albedo properties. This paper presents two
methods for classifying the albedo properties depending on whether the illumination environment is
known, without recovering the albedo parameters. The proposed model is formulated as an energy
function incorporating some new priors, that is optimized via fusion move algorithm.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Stereo is one of the most fundamental topics in computer
vision. Stereo vision attracts many researchers and has been
widely researched since there was the publicly available perfor-
mance testing such as the Middlebury [1] and KITTI stereo
benchmark [2], which allow researchers to compare their algo-
rithms against all the state-of-the-art algorithms.

Different from the feature matching [3,4], which matches
sparse feature points in two images, the stereo matching can
densely match the pixels. The stereo algorithm presented in this
paper uses the popular energy minimization framework that is the
basis for most high-performance algorithms such as graph cuts [5–
7] and belief propagation (BP) [8–12]. The stereo is achieved in
these algorithms, essentially, by solving a Markov Random Field
(MRF) model, including the assumptions of photo-consistency (i.e.
a 3D point should look similar in both views) and smoothness (i.e.
the neighborhood pixels have close disparities).

Besides these assumptions, we believe that a 3D scene is a
collection of a few classes of reflective materials, such that each
class of the material has specific albedo properties, and that 3D
points, which belong to the same material, are likely to lie on a
small number of surfaces, even on a single 3D surface. Moreover,

there are a few 3D smooth surfaces in the scene, such that 3D
points, which lie on the same surface, belong to a few classes of
materials. The energy function and the optimization algorithm in
this work is formalized based on this idea.

Nearly all of the top-ranked methods [8,13–15] in the Middle-
bury benchmark use image segmentation to encourage the pixels
within a single segment to share an identical label or have smooth
disparities. However, the case that the pixels in disconnected
regions, like Fig. 1, cannot be handled by image segmentation. In
contrast, in this work, we use the prior, that the pixels belonging
to the same material are preferred to lie on a small number of
surfaces to motivate these separated pixels to have a small number
of labels, or even a single label.

2. Related work and contributions

Encouraging self-similar pixels to be assigned to the same label is
effective for stereo. A typical way of taking advantage of self-
similarity is performing a color segmentation on the image and
regarding the pixels within each segment as self-similar pixels. Some
segmentation-based algorithms use a hard constraint that the pixels
within a single segment must be assigned to the same plane
[16,8,17], and some others use a soft constraint that the neighboring
two pixels sharing the same segment are only encouraged to lie on
the same plane [18,15]. The scale of segmentation is important for
these algorithms. A large scale of segmentation over-constrains the
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small objects and a small scale of segmentation is hard to constrain
the large objects. Bleyer et al. [14] use a soft segmentation term to
encourage the stereo result to consistent with a precomputed seg-
mentation, but optimizing these higher-order cliques is difficult and
time consuming. To make a tradeoff, we adopt a smoothness penalty
for each pair of neighboring pixels that depends on multi-scale
segmentations and classifications of materials. If two neighboring
pixels belong to a single material, and they are always in the same
segment with different segmentation scales, they are naturally
expected to lie on the same surface.

Another way of handling self-similarity is employing color mod-
els. In [13], an oversegmentation of one input image is refined using
single Gaussians to model color within each small segment, but the
color models are not used during matching and the method cannot
handle small disconnected background regions in the presence of
complex occlusions. In [19], the authors present a method for bilayer
segmentation of stereo input into foreground and background
regions, where color models are also used. This work is extended in
[15], where the authors segment the scene into an arbitrary number
of 3D objects and not just two. Each object has a specific color model
including a compact set of colors. The object segmentation and the
color models rely on each other. Most pixels on the same object are
spatially clustered. To handle small disconnected background regions
in the presence of complex occlusions, they design an occlusion
reasoning. It concerns a 3D connectivity constraint connectivity prior,
which is hard to maintain.

However, in fact, the pixels on an object may have different
colors (it is solved by Gaussian Mixture Model in [15] where the
number of Gaussians need to be specified by users), and the pixels
on different objects may have the same color. The most distinct
difference to our work is that we do not use the one-to-one
relationship between the objects and the color models. We seg-
ment the scene into a few surfaces and materials, where each
surface contains a few materials, and each material occurs on a
few surfaces. Moreover, the material classification results can
provide robust cues for stereo than pixel color, because the pixel
appearance is influenced by many aspects, such as albedo prop-
erties and illumination environment. There is great potentiality for
material classification. In this work, we present two methods of
material classification depending on whether the illumination
environment is known. In addition, material classification provides
the possibility for combining the stereo and shadow estimation.

The main contributions of this paper are summarized as follows.
Firstly, to avoid use a higher-order prior like [14], a soft con-

straint that encourages spatially neighboring pixels to lie on the

same 3D surface is achieved by simply defining the penalty con-
stant depending on whether the neighboring pixels belong to the
same material and whether they are in same segments with dif-
ferent segment scales.

Secondly, we use two global MDL (minimum description length)
priors to penalize the number of surfaces and materials. Furthermore,
we use a local MDL prior to motivate the pixels on the same surface
belong to a small number of materials and the pixels belonging to the
same material to lie on a small number of surfaces.

Thirdly, each material is expected to have specific albedo
properties. This paper presents two methods for classifying the
albedo properties depending on whether the illumination envir-
onment is known, without recovering the albedo parameters.

3. Model

In this paper, we represent the scene as a collection of surfaces
like [14], in which some geometrical properties (such as the cur-
vature and normal vector for each pixel) can be easily described
without higher-MRF model. Following the notation in [14], let I
denote the pixels of the reference image and F denote the set of
all 3D surfaces. Further, let M denote the set of the possible
reflectance materials. We need search two mappings: (1) F : I-F
that assigns each pixel pAL to a surface f pAF , (2) M : I-M that
assigns each pixel to a material.

In fact, the pixels belonging to each class of materials contain a
specific group of similar albedo properties. In other words,
assigning a pixel to a material implicitly assigns the pixel's albedo
properties. Furthermore, assigning a pixel to a surface implicitly
assigns the pixel's disparity, which can be computed according to
the surface function, e.g., if a pixel p is assigned to a depth plane fp,
the corresponding disparity can be computed by dp ¼ f p½a� � pxþ f p
½b� � pyþ f p½c� where a, b and c are plane parameters and px, py are
p's image coordinates. Like [14], we use two types of surfaces, i.e.
plane and thin-plate smoothing spline surface.1

The quality of a mapping F and M is evaluated by an energy
function EðF;MÞ defined as

EðF;MÞ ¼ EdataðFÞþEsmoothðF;MÞþEapðMÞþEsmdlðFÞþEmmdlðMÞ
þEmsmdlðF;MÞ ð1Þ

where each term is described as follows.

Fig. 1. An example of disconnected self-similar regions, e.g. regions 1 and 2 of the table on the bottom left or 3 and 4 on the green background on the top right in (a). The
traditional segmentation based methods (b) do not encourage these disconnected self-similar pixels to be assigned to the same label, while our work uses material
segmentation (c) to motivate these pixels to lie on the same surface. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)

1 We use the Matlab command tpaps with the smoothing parameter p¼0.5 to
generate the candidate spline surfaces.
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