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a b s t r a c t

LASSO is known to have a problem of excessive shrinkage at a sparse representation. To analyze this
problem in detail, in this paper, we consider a positive scaling for soft-thresholding estimators that are
LASSO estimators in an orthogonal regression problem. We especially consider a non-parametric
orthogonal regression problem which includes wavelet denosing. We first gave a risk (generalization
error) of LARS (least angle regression) based soft-thresholding with a single scaling parameter. We then
showed that an optimal scaling value that minimizes the risk under a sparseness condition is
1þOð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
Þ, where n is the number of samples. The important point is that the optimal value of

scaling is larger than one. This implies that expanding soft-thresholding estimator shows a better gen-
eralization performance compared to a naive soft-thresholding. This also implies that a risk of LARS-
based soft-thresholding with the optimal scaling is smaller than without scaling. We then showed their
difference is Oðlog n=nÞ. This also shows an effectiveness of the introduction of scaling. Through simple
numerical experiments, we found that LARS-based soft-thresholding with scaling can improve both of
sparsity and generalization performance compared to a naive soft-thresholding.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, sparse modeling is an important topic in
machine learning and statistics. Especially, LASSO (least absolute
shrinkage and selection operator) is a popular method and has been
extensively studied [19,14,21,23,7,22]. In LASSO, estimators are
obtained by minimizing a cost function that is defined by squared
error sum plus ℓ1 regularizer; i.e. it is an ℓ1 penalized least squares
method. Introduction of ℓ1 penalty yields a sparse representation
under an appropriate choice of a regularization parameter. In case of
orthogonal design, LASSO is known to be reduced to a soft-
thresholding method. The soft-thresholding property is still kept
for non-orthogonal design case; e.g. see Lemma 1 in [23].

Soft-thresholding is well established as a method of wavelet
denoising in signal processing [5,6]. Since discrete wavelet trans-
form is orthogonal transform of samples, wavelet denoising is
viewed as a non-parametric orthogonal regression problem. Soft-
thresholding is a combination of hard-thresholding and shrinkage
in which both of threshold level and amount of shrinkage are
simultaneously controlled by one common non-negative para-
meter. The parameter is a threshold level for removing un-
necessary components. And, simultaneously, estimators of coeffi-
cients of un-removed components are shrunk toward to zero by
subtracting/adding the same parameter value. If the parameter
value is large then threshold level is large. Therefore, the number
of un-removed components is small; i.e. it is possible to give a

sparse representation. However, at the same time, the amount of
shrinkage is also large. It implies that there is possible to yield a
bias in representing a target function at a relatively small number
of components, by which generalization error at a sparse repre-
sentation may be large. Therefore, the number of un-removed
components in soft-thresholding tends to be large if we choose the
parameter value based on a substitution of prediction error such as
cross-validation error or model selection criterion. This is an
inevitable problem of soft-thresholding, which is brought about by
an introduction of one parameter for controlling both of threshold
level and amount of shrinkage simultaneously.

In machine learning, this dilemma between sparsity and gen-
eralization in LASSO has been discussed in [15,8,22]. Ref. [15] has
showed a case where a true relation cannot be selected according
to a generalization error based model selection. To solve this
dilemma in LASSO, SCAD (Smoothly Clipped Absolute Deviation)
penalty has been proposed instead of ℓ1 penalty in [8] and
adaptive LASSO that employs a kind of weighted ℓ1 penalty has
been proposed in [22]. An ℓ1 penalty term is modified by different
ways (functions) in SCAD and adaptive LASSO although amount of
shrinkage is suppressed for large absolute values of estimators in
both methods. Under their modifications, they have shown an
optimality of estimators; i.e. oracle property. On the other hand, in
wavelet denoising, this problem of soft-thresholding has been
pointed out by [11] and [10], in which they claimed that a naive
soft-thresholding imposes a large bias on components with large
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absolute values of coefficients. To overcome this problem, [11] has
introduced a firm shrinkage and [10] has introduced the non-
negative garrote of [1]. In both of them, the amount of shrinkage is
controlled to be small for large absolute values of coefficients.

Although these modifications of LASSO and soft-thresholding
are shown to exhibit desirable performances in theoretical and/or
practical sense, there is no direct analysis on the above problem of
excessive shrinkage at a sparse representation. In this paper, to do
this, we consider to introduce a simple scaling of soft-thresholding
estimator under a non-parametric orthogonal regression problem
in which the number of variables is consistent with the number of
data. We first gave a risk. An optimal scaling value is expected to
be larger than one to compensate the excessive shrinkage that is
thus avoided by the introduction of scaling. Considering a non-
parametric orthogonal regression problem gives us an explicit
soft-thresholding estimator and enables us a detailed analysis; i.e.
quantitative and qualitative evaluation of effects of scaling and a
direct comparison to a naive soft-thresholding.

In Section 2, we give setting of non-parametric orthogonal
regression in which we mention variations of LASSO under ortho-
gonal designs in detail. In Section 3, we show a well known result
on a risk (generalization error) of soft-thresholding and give main
theorems that give a risk of soft-thresholding with scaling and an
optimal scaling which minimizes the risk. Lemmas for proving
theorems are given in Appendix. In Section 4, we verify our theo-
retical results for a toy problem of harmonic analysis and wavelet
denoising. Section 5 is devoted to conclusions and future works.

2. Non-parametric orthogonal regression

2.1. Setting

Let x¼ ðx1;…; xmÞ and y be input variables and an output
variable, for which we have n i.i.d. samples: fðxi; yiÞ : i¼ 1;…;ng,
where xi ¼ ðxi;1;…; xi;mÞ. We assume that yi ¼ hðxiÞþei, i¼1,…,n,
where e1;…; en are i.i.d additive noise sequence according to
Nð0;σ2Þ; i.e. normal distribution with mean 0 and variance σ2.
Under this assumption, we have E½yi jxi� ¼ hðxiÞ. Thus, h is a target
function. We assume that x1;…; xn are fixed below. We define
y¼ ðy1;…; ynÞ0, h¼ ðhðx1Þ;…;hðxnÞÞ0 and e¼ ðe1;…; enÞ0, where 0

denotes a matrix transpose. We then have y¼ hþe and Ey½y� ¼ h.
Let g1; g2;… be a series of functions on Rm. We consider to

estimate a target function by a linear combination of n functions in
this series:

f bðxÞ ¼
Xn
j ¼ 1

bjgjðxÞ; xARm; ð1Þ

where b¼ ðb1;…; bnÞ0 is a coefficient vector. This is a non-
parametric regression problem. We call gj a component or basis
function. We assume that there exist nn and β¼ ðβ1;…;βnÞ0 such
that hðxÞ ¼ Pn

j ¼ 1 βjgjðxÞ for any xARm when nZnn. βj can be zero
for some j. We define Kn ¼ fj : 1r jrn;βja0g. We call gj with jAKn

true component or non-zero component. We also define kn ¼ jKn j
which is the number of true components or non-zero components.
We assume that kn is a relatively small constant value. This
assumption says that there exists a sparse representation of a target
function in terms of a set of n components if n is sufficiently large.

Let G be an n�nmatrix whose (i,j) element is gjðxiÞ. We assume
that the orthogonality condition:

G0G¼ nIn; ð2Þ
where In denotes an n�n identity matrix. We thus consider an
orthogonal non-parametric regression problem; e.g. discrete
Fourier transform and discrete wavelet transform for typical

examples. The least squares estimator under the orthogonality
condition is given by

bc ¼ ðbc1;…;bcnÞ0 ¼ 1
n
G0y: ð3Þ

Note that we have y¼Gbc here. Since there exists a β such that
h¼ Gβ when nZnn,

bc �N β;
σ2

n
In

� �
ð4Þ

holds by the assumption on additive noise; i.e. multivariate normal
distribution with a mean vector β and a unit covariance matrix
multiplied by σ2=n. In other words, bcj �Nðβj;σ2=nÞ, j¼1,…,n andbc1;…;bcn are independent. We define sj ¼ signðbcjÞ, j¼1,…,n, where
sign is a sign function. We define p1;…; pn as an index sequence for
which jbcp1 jZ⋯Z jbcpn j holds. Throughout this paper, we exclude
the case where there are ties since this is guaranteed with prob-
ability one by (4).

2.2. LASSO, LARS, elastic net and adaptive LASSO

In this section, we assume that G0G¼ In holds; i.e. the ortho-
normality condition. For a fixed λ1Z0, cost function of LASSO is
given by

Sλ1 ðbÞ ¼ Jy�GbJ2þλ1 JbJ1; ð5Þ
where J � J is the Euclidean norm and JbJ1 ¼

Pn
k ¼ 1 jbj j . λ1 is a

regularization parameter. The second term of the right hand side
of (5) is called ℓ1 regularizer. A minimizer of (5) under the
orthonormality condition is given bybbL;j ¼ ðjbcj j �λ1=2Þþ sj; j¼ 1;…;n; ð6Þ
where bcj and sj is defined above and ðuÞþ ¼maxðu;0Þ. This is a
soft-thresholding estimator in which λ1=2 is a parameter that
determines threshold level and amount of shrinkage. On the other
hand, for fixed λ1Z0 and λ2Z0, cost function of elastic net is
given by

Sλ1 ;λ2 ðbÞ ¼ Jy�GbJ2þλ1 JbJ1þλ2 JbJ2: ð7Þ
The third term of the right hand side of (7) is called ℓ2 regularizer.
As shown in [24], a minimizer of (7) under the orthonormality
condition is given by

bbE;j ¼
1

1þλ2
bbL;j; j¼ 1;…;n: ð8Þ

Since 1=ð1þλ2Þr1, the solution of elastic net is an estimator that
is obtained by shrinking LASSO estimator that is a soft-
thresholding estimator.

On the other hand, LARS is a greedy iterative algorithm in
which a component is appended to a model at each step. This can
be viewed as a sparse modeling method if we can appropriately
stop it. For this purpose, a Cp type criterion is derived under a mild
condition in [7]. As shown in [13] and Lemma 1 in [7], LARS is also
reduced to soft-thresholding under the orthonormality condition
in which a threshold level is given by jbcpkþ 1

j at the kth step; i.e. it
is the (kþ1)th largest absolute value among the least squares
estimators. By this choice of threshold level, the number of un-
removed components at the kth step is equal to k. Threshold level
(amount of shrinkage) is a real number in LASSO while it is in
fjbc2 j ;…; jbcn j g in LARS.

As in [22], adaptive LASSO solution under the orthonormality
condition is given bybbAL;j ¼ ðjbcj j �wjλ1=2Þþ sj; j¼ 1;…;n; ð9Þ
where wj ¼ 1=jbcj j γ for γ40. This is a minimizer of a cost function
with a weighted ℓ1 regularizer, in which a weight for the jth
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