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a b s t r a c t

The kappa statistic is a widely used as a measure for quantifying agreement between two nominal
classifications. The statistic has been extended to the case of two normalized fuzzy classifications. In this
paper we define category kappas for quantifying agreement on a particular category of two normalized
fuzzy classifications. The overall fuzzy kappa is a weighted average of the proposed category kappas.
Since the value of the overall kappa lies between the minimum and maximum values of the category
kappas, the overall kappa, in a way, summarizes the agreement reflected in the category kappas. The
overall kappa meaningfully reflects the degree of agreement between the fuzzy classifications if the
category kappas are approximately equal. If this is not the case, it is more informative to report the
category kappas.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In various fields of science, classification instruments are used
to classify individuals or objects into categories. The instruments
can be people or algorithms, and the categories are often unor-
dered and mutually exclusive (nominal). Examples are, an educa-
tional psychologist that classifies the arithmetic strategies used by
children to solve a mathematics problem [1,2], a developmental
psychologist that classifies the attachment style of adults [3], a
physical therapist that rates the type of injury [4], a radiologist
that identifies tissues [5], an algorithm that classifies voxels of
magnetic resonance images [6], or an algorithm that classifies the
areas of a land cover map [7,8].

An important property of a classification instrument is its
accuracy or reliability. The accuracy of an instrument can be
quantified by assessing the agreement between two classifications
made with the same instrument. High agreement between the
classifications can then be taken as an indicator of the quality of
the category definitions and the classification instrument in
general.

A widely used statistic for quantifying agreement between two
nominal classifications is the kappa statistic proposed by Cohen
[5,9–11]. The value of kappa is 1 if there is perfect agreement
between the two classifications, and 0 when agreement is equal to
that expected under independence. Cohen's kappa was originally
proposed as a measure of interobserver agreement in the context

of psychological measurement, but the statistic is also used for
map comparison in remote sensing [7,8] and content analysis [12].
Kappa depends on the boundary probabilities of the classifications.
These quantities reflect how often a category was used in the
classifications. Kappas from studies with different boundary
probabilities are not comparable [13,14].

The popularity of the kappa statistic has led to the develop-
ment of several extensions, e.g., kappas for three or more instru-
ments [15], weighted kappas for classification instruments with
ordinal categories [16–18], kappas for groups of observers [19] and
kappas for clustered data [20,21]. In addition, extensions for the
agreement between two fuzzy classifications [6] and two fuzzy
categorical raster maps [7,8] have also been proposed.

The concept of a fuzzy classification is based on fuzzy set theory
[22,23]. Fuzzy set theory is a well-developed mathematical system
for addressing the degree of membership of objects to categories.
In crisp classification objects are pigeonholed: an object either
belongs or does not belong to a category. By contrast, fuzzy set
theory permits the gradual assessment of the membership of an
object into a category. The membership is described with the aid
of a membership function valued in the real unit interval ½0;1�.

Dou et al. [6] proposed a fuzzy kappa for quantifying agreement
between two normalized fuzzy classifications. Their fuzzy kappa is
an overall measure of agreement. If there is any disagreement
between the classifications, the overall statistic does not tell us on
which categories the agreement is almost perfect (if any) and on
which categories agreement is less than perfect. Fuzzy kappas for
the different categories are often more informative. The informa-
tion provided by the category kappas can often be used to improve
the accuracy of the classification instrument [24,25]. However,
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category kappas have not been defined for fuzzy classifications.
This will be done in this paper.

The paper is organized as follows. In the next section the
notation is introduced and the fuzzy kappa statistics are defined.
The fuzzy kappas are illustrated on hypothetical brain tissue data
in Section 3. In Section 4 we consider the case of two categories. It
is shown that in this case the two category kappas and the overall
kappa coincide. An alternative definition of the category kappas is
presented in Section 5. Section 6 contains a discussion.

2. Fuzzy kappas

Let X ¼ xf g be a set of elements (voxels, individuals) of size
jX j ¼ n. In the classification process the objects are assigned to c
unordered categories that are defined in advance, with iA
ð1;2;…; cÞ. The objects are classified twice, either with the same
instrument or with different instruments. The two classifications
are done independently.

We first define a fuzzy kappa for a single category. Let ui :

X-½0;1� be the membership function of category i for the first
classification, and let vi : X-½0;1� be the membership function of
category i for the second classification. It is assumed that both
classifications are normalized:

Xc
i ¼ 1

uiðxÞ ¼ 1; xAX; ð1Þ

and

Xc
i ¼ 1

viðxÞ ¼ 1; xAX: ð2Þ

Normalized classifications describe a certain perfect case. In reality
the requirement may be violated if the classification is done by
human experts.

Let pi and qi denote the boundary probabilities of the first and
second classification, respectively. The boundary probabilities are
defined as

pi ≔
1
n

X
xAX

uiðxÞ; ð3Þ

and

qi ≔
1
n

X
xAX

viðxÞ: ð4Þ

Quantities (3) and (4) reflect how often category i was used in the
first and second classification, respectively. Following Dou et al.
[6], the observed agreement between the classifications on cate-
gory i is defined as

Oi ≔
1
n

X
xAX

minðuiðxÞ; viðxÞÞ: ð5Þ

Let pðuiÞ and qðviÞ denote the probability distribution of ui(x) and
vi(x), respectively. Assuming that ui(x) is independent of vi(x) for
all xAX, the expectation of random agreement for category i is
defined as

Ei≔
Z 1

ui ¼ 0

Z 1

vi ¼ 0
pðuiÞ qðviÞminðui; viÞ dui dvi: ð6Þ

If ui and vi are binary functions, i.e., if ui and vi take on the values
0 and 1 only, then the expectation of random agreement becomes

Ei ¼ piqi: ð7Þ
A fuzzy kappa for category i can now be defined as

κi ≔
Oi�Ei

ðpiþqiÞ=2�Ei
: ð8Þ

If ui and vi are binary functions, statistic (8) becomes the category
kappa for crisp classifications (see, e.g., [24–26]).

It turns out that the overall fuzzy kappa introduced in Dou et al.
[6] is a weighted average of the category kappas in (8). Define for
category i the weight

wi ≔
piþqi
2

�Ei: ð9Þ

An overall fuzzy kappa can be defined as a weighted average of the
fuzzy category kappas:

κ ≔
Pc

i ¼ 1 wiκiPc
i ¼ 1 wi

: ð10Þ

Since

Xc
i ¼ 1

piþqi
2

¼ 1 ð11Þ

statistic (10) is identical to

κ ¼
Pc

i ¼ 1 Oi�Eið Þ
1� Pc

i ¼ 1 Ei
; ð12Þ

which is the fuzzy kappa proposed in Dou et al. [6]. If ui and vi are
binary functions, fuzzy kappa (12) becomes the ordinary kappa for
crisp classifications [24,25]. Several properties of fuzzy kappa (12)
are discussed by Dou et al. [6].

3. An illustration

Brain images can be decomposed into tiny cubes called voxels.
A typical size of a voxel is 1� 1� 1 mm3 and an image may consist
of tens of thousands of voxels. To illustrate the fuzzy category
kappas and the overall fuzzy kappa we consider a hypothetical
example that consists of ten voxels. Table 1 presents two hypo-
thetical fuzzy classifications of ten voxels into three tissue cate-
gories: gray matter (GM), white matter (WM) and cerebral spinal
fluid (CSF). Each row of Table 1 corresponds to a voxel. The six
membership functions of the categories take on values from the
set ð0;0:2;0:4;0:6;0:8;1Þ. It can be verified that the fuzzy classifi-
cations are normalized, i.e., the values in each row of either clas-
sification sum up to 1.

Table 2 presents the values of the observed agreement,
expectation of random agreement, and the kappa statistics for the
data in Table 1. The value of the overall kappa is 0.77, indicating a
good level of agreement between the two fuzzy classifications. The
values of the three category kappas are quite different. The values
for WM and CSF are 0.75 and 0.66, respectively, indicating a good
level of agreement. However, the value for GM is 0.92, indicating
an excellent level of agreement. The category kappas show that
there is virtually no disagreement on GM, while there is some

Table 1
Two hypothetical fuzzy classifications of ten voxels.

Classification 1 Classification 2

GM WM CSF GM WM CSF

0.2 0.4 0.4 0.2 0.6 0.2
0.6 0.4 0 0.6 0.4 0
0.4 0.4 0.2 0.4 0.6 0
0.2 0.4 0.4 0.2 0.4 0.4
0.4 0.4 0.2 0.4 0.2 0.4
0 0.8 0.2 0 0.8 0.2
0.6 0.4 0 0.6 0.4 0
0.2 0.2 0.6 0 0.2 0.8
0 0.8 0.2 0 0.8 0.2
0.2 0.8 0 0.2 0.8 0
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