
Multi-fields model for predicting target–ligand interaction

Caihua Wang a, Juan Liu a,n, Fei Luo a, Qian-Nan Hu b,nn

a School of Computer, Wuhan University, Wuhan 430072, PR China
b Tianjin Institute of Industrial Biotechnology (TIB) of Chinese Academy of Sciences (CAS), Tianjin 300308, PR China

a r t i c l e i n f o

Article history:
Received 26 August 2015
Received in revised form
18 January 2016
Accepted 18 March 2016
Available online 30 May 2016

Keywords:
Protein representation
Ligand representation
Field interaction
Target–ligand interaction
Target–ligand network analysis

a b s t r a c t

Predicting target–ligand interactions is a critical task of chemogenomics and plays a key role in virtual
drug discovery. Moreover, it is important to take insights into the molecular recognition mechanisms
between chemical substructures of ligands and binding sites of targets. In this work, we suppose the
interaction between a ligand and a target is the result of the comprehensive effect of multiple fields
between the ligand and the binding site of the target, and propose a multi-field interaction model
(MFIM) to predict the target–ligand interaction. The evaluation result on the same data set shows that
MFIM outperforms other two representative methods. The derived fragment interaction network is
robust to the parameter fluctuation and the connections in the network are sparse. Moreover, the edge
weights of the network might reflect the fragment interaction intensity and most of the significant edges
are chemical interpretable.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Target–ligand interactions play an initial role in cell signal conduc-
tion and predicting interactions between targets and ligands is the key
task of chemogenomics. Through various high-throughput experi-
mental projects for analyzing the genome, transcriptome and proteome,
we are beginning to understand the genomic spaces populated by these
protein classes. Meanwhile, the high-throughput screening of large-
scale chemical compound libraries with various biological assays is
enabling us to explore the chemical space [1,2]. However, our knowl-
edge about the relationship between the chemical and genomic spaces
is very limited [3,4]. Since experimental ways to determine target–
ligand interactions are costly and time-consuming, there is a strong
incentive to develop computational methods capable of detecting
potential target–ligand interactions efficiently.

Traditional computational methods could be roughly classified
into two categories: ligand-based ones and target-based ones [3]. In
ligand-based approaches, a ligand is compared to the ligands known
interacting with a given target to make the prediction. Therefore,
these approaches require enough number of ligand binding with the
given target. Molecular docking is a typical target-based approach,
however, it is time-consuming and is tricky to find a score function to
select the best conformation [5].

Both of the above types of methods only consider information on
one side of the interaction pair whereas ignoring important informa-
tion on the other side. In recent years, researchers have begun to take
the viewpoint of target–ligand based chemogenomics approaches,
taking information on both sides of the interaction pair into con-
sideration. Bleakley and Yamanishi showed that the ensemble of
ligand-based and target-based prediction models performed much
better than only using single type of model [6]. Based on this fact, they
proposed a bipartite local model (BLM). The BLM method has been
further studied and improved by some researchers [7–9]. Leslie et al.
first described the targets as full length sequences whose similarities
were measured by the mismatch kernel [10,11]; and represented the
ligands with PubChem fingerprints [12] whose similarities were
measured by the Tanimoto kernel. Then they constructed the pairwise
support vector machine (pSVM) to predict the target–ligand interac-
tions. Vert et al. followed Leslie's framework except that they adopted
the local alignment kernel [13] to compare target similarity. Jacob et al.
also followed Leslie's framework, however they described targets
(proteins) as EC numbers, and applied a hierarchy kernel (tree-based
kernel) to compare target similarity [14]. Van Laarhoven et al. repre-
sented targets as sequences and ligands with molecular graphs. They
applied Smith-Waterman score [15] to measure the target sequence
similarity, and used SIMCOMP [4] to measure the similarity score
between moleculars. They also got the target–ligand interaction net-
work profiles and adopted Gaussian kernel to measure the network
profile similarity. After that, they combined the Smith-Waterman
score and Gaussian kernel to get the final target kernel, and com-
bined the SIMCOMP score and Gaussian kernel to get the final ligand
kernel. And then, they used the kernel ridge regression (RLS) [7] to
make a prediction. Yamanishi et al. developed a supervised learning
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algorithm to infer unknown drug–target interactions by integrating
the chemical space and genomic space into a unified space (“phar-
macological space”), in which the higher probabilities a target and
ligand interact with each other, the closer they are [4]. Besides, many
researchers employ data-driven approaches to predict target–ligand
interaction, as availability of many genomic and chemogenomic data
sources. Wang et al. proposed a kernel-based method to predict drug–
protein interactions by integrating multiple types of data [16–18]. Zhao
and Li developed a computational framework, drugCIPHER, to infer
drug–target interactions in a genome-wide scale [19].

Basic assumptions of most chemogenomic-based approach are
twofold: compounds sharing some chemical similarity should also
share targets and targets sharing similar ligands should share similar
patterns/binding-sites [3]. Most of the previous work are based on the
two assumptions [6–10,13,14]. Although those methods usually per-
form well on the data set, we know little about the interaction
mechanisms, which means the algorithms work in a black box. In this
work, inspired by QSAR [20] which decomposes the interactions into
different fields, we propose a new model called multi-fields interaction
model (MFIM) to give insight into the molecular recognition mechan-
isms between chemical substructures of ligands and binding sites of
targets. Our hypotheses are (1) there are multiple types of fields around
amolecular fragment. The interaction of twomolecular fragments is the
result of the comprehensive effect of multiple fields; (2) the fields
around a binding-site/ligand originate in the superposition of the fields
of their fragment. The target–ligand interaction is the result of the
comprehensive effect of their fragment fields; (3) different types of
fields are heterogeneous and heterogeneous fields cannot interact with
each other. For instance, the electrostatic field does not interact with
hydrophobic field. Based on the three hypotheses, we build our algo-
rithm (Fig. 1). First, according to the target dictionary and the ligand
dictionary, the binding sites of the targets and the ligands are encoded
as binding site fragment vectors and ligand substructure vectors,
forming the origin target and ligand spaces respectively. Then, we figure
out the multiple field intensities around the molecular fragments
ðU;VÞ, and the two origin spaces are mapped into target and ligand
field spaces respectively. The target fields would interact with the

homogeneous ligand fields and a pairwise field space is generated.
Finally, we construct a classifier to predict site–ligand interactions in the
pairwise field space. Moreover, we integrate the multiple fields of
molecular fragments and obtain a fragment interaction network, which
give insight into the molecular recognition mechanisms between che-
mical substructures of ligands and binding sites of targets.

2. Materials and methods

2.1. Data set and data representations

In this work, we use the data set constructed in our preliminary
work [21]. There are totally 836 targets and 2710 corresponding
ligands. Among those proteins, there are 782 targets with one
binding site, which interact with 1988 ligands and form 2561
interaction pairs. The others possess multi-sites, which interact
with 722 ligands and form 854 interaction pairs. The negative site–
ligand pairs are generated as our preliminary work, totally 6830
target–ligand pairs are included in our data set [22,23].

Just as in our preliminary work [21], we represent each binding site
as a 199-dimensional vector, in which each element denotes the
occurring frequency of a set of trimers in the binding site (a trimer is a
three-residue fragment of the binding site, and all possible trimers are
clustered into 199 types according to their physical–chemical properties
by Nagamine and Sakakibara [24,25]); we represent each ligand as a
413-dimensional binary vector, each element corresponds to the pre-
sence/absence of one chemical substructure (fragment) in the ligand
dictionary (413 substructures in all).

2.2. Multi-field interaction model

Suppose there are p binding sites, and si, an m-dimensional vector
(m¼199), denotes the i-th binding site. Suppose there are q ligands,
and lj , a n-dimensional vector (n¼413), denotes the j-th ligand.We use
D¼ ðði1; j1Þ; ði2; j2Þ;…; ðiN ; jNÞÞ to denote all the site–ligand pairs in the
data set, where N is the total number of site–ligand pairs (N ¼ 6830),

Fig. 1. Multi-field interaction model. First, based on the target dictionary and the ligand dictionary, the binding sites of the targets and the ligands are encoded as binding
site fragment vectors and ligand substructure vectors, forming the target and ligand spaces respectively. Then, two spaces are mapped into target and ligand field spaces
respectively. The target fields would interact with the homogeneous ligand fields and a pairwise field space is generated. Finally, we construct a classifier to predict site–
ligand interactions in the pairwise field space.
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