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a b s t r a c t

Accurate and automated identification of mitosis is essential and challenging to many biomedical
applications. To handle this challenge, we propose a novel mitotic cell recognition method by integrating
heterogenous data in the framework of cross domain learning. First, we extract the discriminative feature
to represent the local structure and textural saliency of individual cell sample. Second, the cell type-
dependent classifiers are respectively trained on the target domain and the auxiliary domain and then
fused in the framework of adaptive support vector machine for cross-domain learning. The achieved
classifier can be implemented for mitotic cell recognition in the cross domain manner. The extensive
experiments on two kinds of phase contrast microscopy image sequences (C3H10T1/2& C2C12) show
that the proposed method can leverage the datasets from multiple domains to boost the performance by
effectively transferring the knowledge from the auxiliary domain to the target domain. Therefore, it can
overcome the inconsistence of feature distributions in different domains.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recently, researchers are paying increasing attention on
applying image analysis and machine learning for various routine
clinical pathology tests [1–4]. Results outputted by these advanced
techniques can be leveraged for further subjective analysis by
scientists, which will make the test results to be more reliable and
consistent across laboratories [4]. The related computer-aided
methods have been widely used for many medical, especially for
breast cancer diagnosis [5]. Among measurable characteristics, the
detection and counting of mitotic cells is currently considered as
the optimal predictor for long-term prognosis for breast carcino-
mas [6]. However, the requirement of manual annotation of
mitosis is a time-consuming task [7]. Therefore, it is essential to
explore the methods for automated mitotic cell recognition.

To our knowledge, most of previous methods work on the
learning problem in the same domain [8,9]. Since both training
dataset and test dataset are prepared under the same conditions,
the classifier learned on the training dataset can be straightfor-
wardly applied to the test dataset for prediction. However, the
state-of-the-art public cell image dataset for the classification
problem usually contains a limited number of samples. Facing the
difficulty caused by the variation of non-rigid cell appearance,

irregular motion, the existence of artifacts by the imaging devices,
etc., it is essential to take advantage of the classifiers trained in
different domains [10,11] and augment the dataset to learn a
robust classifier with high generalization ability. However, it is
usually expensive for large-scale dataset preparation and manual
segmentation and annotation of specific cell regions. Conse-
quently, it is reasonable to explore the method, which can take
advantage of different dataset for model learning [12,13].

In this paper, we propose a cross-domain mitosis modeling
method for automated mitotic cell recognition. First, the dis-
criminative feature is extracted for individual sample to represent
its local structure and textural saliency. Then, the adaptive support
vector machine is adapted for this work for cross-domain learning.
Two kinds of phase contrast microscopy image sequences
(C3H10T1/2& C2C12) are selected for the experiments. The exten-
sive experiments show that the proposed method can leverage the
dataset from multiple domains to boost the performance by effec-
tively transferring the knowledge from the auxiliary domain to the
target domain. The main contribution lies in two-folds:

1. This method can overcome the inconsistence of feature dis-
tributions in different domains.

2. It can reduce the requirement on large-scale manual annotation
on the target domain by implicitly augmenting the training data
with the existing annotated auxiliary dataset.

The rest of paper is structured as follows. In the 2nd section, we
will introduce the related work. Then we will detail the method
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for cross-domain mitotic cell modeling. The experimental method
and results will be respectively detailed in the 4th section and the
5th section respectively. At last, conclusion is presented.

2. Related work

Automated mitotic cell classification methods usually consist of
two essential steps, visual feature representation and mitotic
modeling. From the view point of feature representation, various
image features have been implemented for this task. Liu et al. [14]
extracted the area features (area and convex area), the shape
features (eccentricity, major axis length, minor axis length and
orientation), and the intensity features (maximum intensity, mean
intensity, and minimum intensity), to represent the candidate
mitotic region. Perner et al. [15] and Hiemann et al. [4] imple-
mented the textual descriptors for this task. Cordelli and Soda [16]
and Strandmark et al. [17] developed specific morphological fea-
tures to describe the saliency of ROI region. Li et al. [18] extracted
the volumetric Haar-like feature to represent the spatiotemporal
volume in the image sequence. Moreover, the popular local sal-
iency descriptors, such as GIST [19,20], Scale-Invariant Feature
Transform (SIFT) [21–23], and Histogram of Oriented Gradient
(HoG) [24], are also applied for this task because of the high dis-
criminative capability and the robustness. To improve the dis-
crimination of feature representation, the strategy of the fusion of
multiple image features has been widely evaluated [25,26]. More
recently, sparse representation [27] is also implemented to trans-
form the aforementioned low-level visual features into a high-
level formulation, which can directly represent the similarity
between samples. Liu et al. [28,24] proposed that the sparse
representation-based method can benefit discovering dis-
criminative feature comparing to the classic hand-crafted low-
level features. Furthermore, Liu et al. [20] extended the traditional
sparse representation method to the sequential sparse repre-
sentation by imposing the temporal context regularization to
induce sequential image feature transform. From the view point of
model learning, more and more powerful classifiers, including
support vector machine, random forest, Adaboost, etc. [29], have
been applied on mitotic recognition. Liu et al. [30] originally pro-
posed the clustered multi-task learning-based method to discover
the latent relatedness among multiple cell types to boost the
performance of cell classification. Recently, the popular deep
learning principle [31] is also implemented on this task. Ciresan
et al. [32,33] successfully leveraged the Deep Neural Networks on
mitosis detection. This approach won the ICPR 2012 and MICCAI
2013 mitosis detection competitions. Another trend for this task is
based on the graphical model principle [34–37], which can learn
the sequential dynamics within one mitosis event. Gallardo et al.
[38] applied the hidden Markov model to train a classifier for
mitosis recognition with cell shape and appearance saliency. Liu
et al. [39] applied the hidden-state conditional random field to
learn the sequential structure of mitosis progression. Recently, Liu
et al. [23] originally designed the semi-Markov model for mitosis
sequence segmentation. Especially, they proposed the integration
of hidden conditional random fields and the semi-markov model
for both mitosis identification and localization in the time-lapse
microscopy image sequence. Furthermore, they theoretically unify
learning both models with the max-margin theory. Extensive
experiment and comparison to the competing methods demon-
strated that this method can achieve the state-of-the-art perfor-
mance on mitosis detection. This method has become one of the
most representative frameworks for mitosis detection.

3. Cross-domain modeling

This step aims to learn a model which can be implemented for
automatic mitotic cell recognition on individual unlabeled images.
Different from previous work which simply learned and tested the
classifier f(x) on the un-overlapped two parts of one dataset, which
captures one type of cell under the same environment (single
domain) and the feature representation of individual mitotic
candidate regions of both training and test sets belongs to iden-
tical distribution, our work will take advantage of the datasets
from both target domain and auxiliary domain to augment the
generalization ability of the learned model. Specifically, let DT

denote the target domain (e.g. C3H10T1/2 cell in Fig. 1(a)) and let
DT ¼DT

l ⋃DT
u denote the two parts of the target domain, where DT

l

is the manually labeled part and DT
u is the unlabeled part. Ideally,

the size of DT
l is smaller compared with the size of DT. The labeled

subset can be represented by DT
l ¼ fðxi; yiÞgNi ¼ 1 where xi is the

visual feature of the ith sample and yiAf�1; þ1g is its binary
label. The auxiliary domain capturing the other type of cell under a
different environment (e.g. C2C12 cell in Fig. 1(b)) can be repre-
sented by DA. Because DT and DA are captured under different
conditions, various aspects, including cell types, image resolution,
lighting and so on, will have negative influence on direct cross-
domain learning and test. Simply concatenating the datasets from
both domains might not improve the performance and would
even degrade it. To deal with this problem, we well adapt the
adaptive support vector machine (ASVM) [40] for cross-domain
mitotic learning.

The ultimate goal of our task is to learn a primary classifier f(x)
for automatic mitotic cell recognition on the target domain DT.
When there is only limited dataset for primary classifier learning,
it is expected to leverage the auxiliary dataset to boost the training
dataset and consequently augment the performance. In our work,
we can first train the auxiliary classifier f AðxÞ by SVM on the
auxiliary dataset. Then f AðxÞ can be integrated with the primary
classifier f(x) for cross-domain learning and test.

To integrate the auxiliary classifier f AðxÞ and the primary clas-
sifier f(x), the incremental term in the form of Δf ðxÞ ¼w>ϕðxÞ is
designed and amended to f AðxÞ. The proposed cross-domain
mitotic modeling method can be formulated as

f ðxÞ ¼ f AðxÞþΔf ðxÞ ¼ f AðxÞþw>ϕðxÞ ð1Þ
Motivated by the max-margin principle, the objective function for
learning the parameter w can be formulated as

min
w

1
2
JwJ2þC

XN

i ¼ 1

ξi

s:t: ξiZ0; yif
AðxiÞþyiw

>ϕðxiÞZ1�ξi ð2Þ
The Lagrangian formulation of Eq. (2) is

LP ¼
1
2
JwJ2þC

XN

i ¼ 1

ξi�
XN

i ¼ 1

μiξi�
XN

i ¼ 1

αiðyif AðxiÞþyiw
>ϕðxiÞ�ð1�ξiÞÞ

ð3Þ
where αiZ0 and μiZ0 are Lagrange multipliers. Eq. (3) can be
optimized by setting its derivative with respect to w and ξ to zero.
Consequently, we can achieve

w¼
XN

i ¼ 1

αiyiϕðxiÞ

αi ¼ C�μi; 8 i ð4Þ
The Karush–Kuhn–Tucker(KKT) conditions can be formulated

as follows to constrain the optimal solution of Eq. (3):

αifyif AðxiÞþyiw
> xi�ð1�ξiÞg ¼ 0

αiZ0
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