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a b s t r a c t

We propose a prediction procedure for the functional linear quantile regression model by using partial
quantile covariance techniques and develop a simple partial quantile regression (SIMPQR) algorithm to
efficiently extract partial quantile regression (PQR) basis for estimating functional coefficients. We fur-
ther extend our partial quantile covariance techniques to functional composite quantile regression (CQR)
defining partial composite quantile covariance. There are three major contributions. (1) We define partial
quantile covariance between two scalar variables through linear quantile regression. We compute PQR
basis by sequentially maximizing the partial quantile covariance between the response and projections of
functional covariates. (2) In order to efficiently extract PQR basis, we develop a SIMPQR algorithm analog
to simple partial least squares (SIMPLS). (3) Under the homoscedasticity assumption, we extend our
techniques to partial composite quantile covariance and use it to find the partial composite quantile
regression (PCQR) basis. The SIMPQR algorithm is then modified to obtain the SIMPCQR algorithm. Two
simulation studies show the superiority of our proposed methods. Two real data from ADHD-200 sample
and ADNI are analyzed using our proposed methods.
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1. Introduction

Nowadays, there is great need in the analysis of complex
neuroimaging data obtained from various cross-sectional and
clustered neuroimaging studies. These neuroimaging studies are
essential to advancing our understanding of the neural develop-
ment of neuropsychiatric and neurodegenerative disorders, sub-
stance use disorders, the normal brain and the interactive effects
of environmental and genetic factors on brain structure and
function. Such large imaging studies include the ADNI (Alzhei-
mer's Disease Neuroimaging Initiative), the longitudinal magnetic
resonance imaging (MRI) study of schizophrenia, autism, and
attention deficit hyperactivity disorder (ADHD), the NIH human
connectome project, among many others. Neuroimaging studies
usually collect structural, neurochemical, and functional images
over both time and space [15,16,33]. These structural,

neurochemical, and functional imaging modalities include com-
puted axial tomography (CT), diffusion tensor imaging (DTI),
functional magnetic resonance imaging (fMRI), magnetic reso-
nance imaging (MRI), magnetic resonance spectroscopy (MRS),
positron emission tomography (PET), single photon emission
tomography (SPECT), electroencephalography (EEG), and magne-
toencephalography (MEG), among many others. For instance, by
using anatomical MRI, various measures of the morphology of the
cortical and subcortical structures (e.g., hippocampus) are extrac-
ted to understand neuroanatomical differences in brain structure
across different populations [14,36]. In DTI, various diffusion
properties and fiber tracts are extracted for quantitative assess-
ment of anatomical connectivity across different populations
[4,48–50]. Functional images, such as resting-state functional MRI
(rsfMRI), have been widely used in behavioral and cognitive neu-
roscience to understand functional segregation and integration of
different brain regions across different populations [21,34].

A common feature of many imaging techniques is that massive
functional data are observed/calculated at the same design points,
such as time for functional images (e.g., PET and fMRI) and
arclength for structure imaging (e.g. DTI). As an illustration, we
present two smoothed functional data that we encounter in neu-
roimaging studies. First, we consider the BOLD rsfMRI signal,
which is based on hemodynamic responses secondary to resting-
state. We plot the estimated hemodynamic response functions
(HRF) with 172 time courses from 20 randomly selected children

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.08.116
0925-2312/Crown Copyright & 2016 Published by Elsevier B.V. All rights reserved.

☆The Alzheimer's Disease Neuroimaging Initiative: Part of the data used in pre-
paration of this paper were obtained from the Alzheimer's Disease Neuroimaging
Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the
ADNI contributed to the design and implementation of ADNI and/or provided data
but did not participate in analysis or writing of this report. A complete listing of
ADNI investigators can be found at: http://adni.loni.ucla.edu/wp-content/uploads/
how_to_apply/ADNI_Acknowledgement_List.pdf.

n Corresponding author.
E-mail address: lkong@ualberta.ca (L. Kong).

Neurocomputing 195 (2016) 74–87

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.08.116
http://dx.doi.org/10.1016/j.neucom.2015.08.116
http://dx.doi.org/10.1016/j.neucom.2015.08.116
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.08.116&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.08.116&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.08.116&domain=pdf
mailto:lkong@ualberta.ca
http://dx.doi.org/10.1016/j.neucom.2015.08.116


at a selected region of interest (ROI) of Anatomical Automatic
Labeling (AAL) atlas [42] from the New York University (NYU) Child
Study Center from the ADHD-200 Sample Initiative Project. Although
the canonical form of the HRF is often used, when applying rsfMRI in
a clinical population with possibly altered hemodynamic responses
(Fig. 1 (a)), using the subject's own HRF in rsfMRI data analysis may
be advantageous because HRF variability is greater across subjects
than across brain regions within a subject [1,31]. We are particularly
interested in delineating the structure of the variability of the HRF
and their capacity of predicting ADHD index with a set of covariates
of interest, such as diagnostic group [30]. Secondly, we plot one
diffusion property, called fractional anisotropy (FA), measured at 83
grid points along the midsagittal corpus callosum (CC) skeleton
(Fig. 1 (b)) from 30 randomly selected infants from the NIH Alzhei-
mer's Disease Neuroimaging Initiative (ADNI) study. The corpus cal-
losum (CC) is the largest fiber tract in the human brain and is a
topographically organized structure. It is responsible for much of the
communication between the two hemispheres and connects
homologous areas in the two cerebral hemispheres. Scientists are
particularly interested in delineating the structure of the variability of
these functional FA data and their prediction ability on mini-mental
state examination (MMSE) with a set of covariates of interest, such as
genetic information. MMSE is one of the most widely used screening
tests on Alzheimer's Disease to provide brief and objective measures
of cognitive functioning [41]. We will systematically investigate these
two prediction problems using functional imaging data over time or
space in Section 7 after we develop our methodology.

A functional linear regression model, where the responses such
as the neurological or clinical outcomes (e.g. ADHD index or
MMSE) are modeled by a set of scalar covariates and functional
covariates of interest (e.g. HRF along time courses or FA along
arclength), is a powerful statistical tool for addressing these sci-
entific questions [17,18,48,49]. In particular, denoting the neuro-
logical or clinical outcome of the i-th subject by yi, i¼ 1;…;n, the
functional linear regression model is of the form

yi ¼ αþxTi βþ
Z 1

0
zTi ðtÞγðtÞ dtþϵi; ð1Þ

where α is the intercept, β¼ ðβ1;…;βpÞT is a p� 1 vector of
coefficients, xi ¼ ðxi1;…; xipÞT is a p� 1 vector of scalar covariates of

interest, γðtÞ ¼ ðγ1ðtÞ;…; γqðtÞÞT is a q� 1 vector of coefficient
functions of t, ziðtÞ ¼ ðzi1ðtÞ;…; ziqðtÞÞT is a q� 1 vector of functional
covariates, and ϵi is a random error. It is usually assumed that ϵi is
independent and identical copy of normal distribution with zero
mean and variance σ2. For simplicity, we let tA ½0;1�. Model (1) is a
generalization of the classical linear regression model corre-
sponding to the case γðtÞ is a constant. If it is not constant, the
contributions of ziðtÞ characterized by γðtÞ change in terms of t. The
model has been well studied and applied in many fields including
neuroimaging data analysis [2,23,29,37]. To facilitate the estima-
tion of γðtÞ, we usually require that it satisfies certain smoothness
conditions and restrict it onto a functional space. For example, we
may require that its second derivative exists and that the square of
γðtÞ is integrable, that is, γðtÞAL2½0;1�. Even in such a case, the
estimation is still an infinite-dimensional problem.

The common practice is to project γðtÞ into a functional space
with a finite functional basis. There are three major methods to
choose the functional basis: general basis, functional principal
component (fPC) basis, and partial least square (PLS) basis. There
are various options on the selection of general basis, for example
B-spline basis [6,9], wavelet basis [45] and so on. In order to
provide a good approximation of the functional coefficients, a
large number of basis should be chosen. However, this may cause
overfitting of the model and to remedy that various penalty
methods have been proposed [10,44]. The fPC method has been
extensively studied [19,27] where the fPC of ziðtÞ serve as the basis.
Its generalization to the reproducing kernel Hilbert space (RKHS)
was proposed by Cai and Yuan [7,43] who also studied its minimax
rates. Although fPC basis is more data-adapted than the general
basis as they use the information of functional covariates and the
formed space can explain most of the variation of ziðtÞ, it is not
necessary that all the fPC basis will contribute to the variation of
the responses. Therefore, another appealing choice is the PLS basis
which uses both the information of functional covariates and the
responses. The PLS basis uses the linear projects of ziðtÞ which best
predicts the responses [12].

An alternative to model (1) is the functional linear quantile
regression where the conditional quantiles of the responses are
modeled by a set of scalar covariates and functional covariates.
There are at least three advantages to use conditional quantiles

Time

C
er
eb
el
lu
m

−0
.3
5

−0
.2
5

−0
.1
5

−0
.0
5

0.
05

0.
15

0.
25

0.
35

50 100 150
arclength

FA

0.
2

0.
4

0.
6

0.
8

1.
0

10 20 30 40 50 60 70 80

Fig. 1. Representative functional neuroimaging data: (left) the estimated hemodynamic response functions (HRF) corresponding to resting-state from 20 children at NYU
from the ADHD-200 Sample Initiative Project and (right) fractional anisotropy (FA) along the midsagittal corpus callosum (CC) skeleton from 30 randomly selected subjects
from the NIH Alzheimer's Disease Neuroimaging Initiative (ADNI) study.
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