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a b s t r a c t

This paper proposes a self-representation method for kNN (k nearest neighbors) classification. Specifi-
cally, this paper first designs a self-reconstruction method to reconstruct each data point by all the data,
and the derived reconstruction coefficient is then used for calculating the k value for each training
sample. Furthermore, a decision tree is built with the resulting k values for each data point to output
labels of the training samples. With the built decision tree, the proposed method classifies test samples.
Finally, the experimental results on real datasets showed the proposed method outperformed the state-
of-the-art methods.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Since the k nearest neighbor (kNN) method has been widely
applied in various applications, such as pattern recognition, cancer
diagnosis, and text classification, it has been selected as one of top-
10 data mining algorithms [16]. The kNN method first identifies k
nearest training samples for a test sample, and then predicts the
test sample with the major class among the k nearest training
samples [3]. Specifically, first, the kNN method uses Euclidean
distance in Eq. (1) (or other metric learning methods) to measure
the difference or similarity between training samples and test
samples. The Euclidean distance Distðxi; xjÞ between two data
points xi and xjis defined as follows.

Distðxi; xjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i ¼ 1

ðxi�xjÞ2
vuut ð1Þ

The kNN method then uses the major class of x's k nearest
neighbors to estimate the unknown sample x:

cðxÞ ¼ arg max
cAC

Xk
i ¼ 1

δðc; cðyiÞÞ ð2Þ

where y1; y2; :::; yk are the k nearest neighbors of x, k is the number
of the neighbors, c denotes the finite set of class labels and δðc; c
ðyiÞÞ is an indicator, and δðc; cðyiÞÞ ¼ 1 if c¼ cðyiÞ; δðc; cðyiÞÞ ¼ 0
otherwise.

To improve the performance of conventional kNN method,
different methods have been proposed for gaining a higher accu-
racy [2,12,15,17,20]. For example, some literatures [11,13,14]
focused on constructing a reasonable distance function and setting
appropriate k values to improve the classification accuracy. How-
ever, a few literature have been focused on the issue of setting
different k values for different samples. That is, most of kNN
algorithms used a fixed k for predicting each test sample [15,19].
This often leads to inaccurate predictions [21]. Recently, literatures
on setting different k values for different samples have demon-
strated the potential power for all kinds applications [2,26]. For
example, Lall et al. mentioned that the appropriate k should assign
k¼ ffiffiffi

n
p

to the datasets with the sample size larger than 100 [7].
Mitra et al. thought that the k value should assign k¼

ffiffiffiffi
N

ph i
to the

test sample (N is the number of training samples and the symbol
‘[]’ denotes the greatest integer function) [10]. Sahigara proposed
to obtain the appropriate k value by Monte Carlo validation for
QSAR analysis [12], called ADNN in the experimental part of this
paper. However, ADNN needs to repeat several times and to
smooth the parameter k, i.e., it is a time consuming process.

This paper focuses on setting optimal k values for different test
samples with kNN method based on the correlation among the
samples. We employ a reconstruction method to obtain such
correlation instead of traditional methods, such as the Euclidean
distance and similarity estimate [34,35]. Specifically, the proposed
Self Representation kNN (SR-kNN) method first employs the least
square loss function to reconstruct the training samples for gain-
ing the correlation coefficient matrix. And then the correlation
coefficient matrix is used to obtain the kth different most relevant
training samples. Furthermore, the corresponding various k values
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of the training samples are taken as labels to build a decision tree.
Consequently, the best value of alterable k is learned at training
process and used by kNNC for all test samples. The experimental
results on real medical datasets verify that the time consuming of
our approach is approximate to the state-of-the-art kNN method,
but less than traditional methods. We also indicate that the pro-
posed method outperforms the state-of-the-art methods in terms
of classification accuracy.

The rest of this paper is organized as follows. In Section 2, we
briefly recall related work about the improved kNN method. We
provide the detail of our approach in Section 3. The experiment
analysis is presented in Section 4. Finally, Section 5 concludes
this paper.

2. Related work

The kNN algorithm has been successful applied in missing
value imputation, regression and classification [2,5,29,36]. For
example, Zhang et al. proposed a Grey-Based distance measure for
kNN iteration imputation algorithm to improve the imputation
performance [21,28,27,30]. Burba et al. used some asymptotic
properties to the kNN method for regression [1]. Goldberger et al.
proposed a distance metric learning algorithm to improve kNN
method for classification [4].

Recently, many literatures have been proposed to improve the
kNN method on different aspects, such as distance metric and
classification rule. For example, Li et al. proposed a random kNN
criterion for significantly stable, robust and fast learning [9]. Yigit
proposed an Artificial Bee Colony (ABC) algorithm to find the best
distance weight for each test sample in kNN method [19]. Lan et al.
described the Multi-Source k-Nearest Neighbor (MS-kNN) algo-
rithm for protein function prediction [8]. Su improved the kNN
classifier and employed a genetic algorithm for clustering [13].
Therefore, we propose to obtain a flexible k value for kNN algo-
rithm and reduce the time consuming via creating a decision tree
for the test samples.

Regarding the studies on the distance metric of kNN methods,
Younes et al. considered the dependencies between labels with the
kNN rule for multi-class classification problems [20]. Para-
meswaran et al. defined a large margin multi-tasks metric learning
used in the kNN method [11]. Jiang et al. synthesized the improved
distance function in the kNN method to improve the kNN draw-
backs [6].

Regarding the study about the optimum k value of kNN
methods, Xie et al. proposed a model to learn different k values for
each data points, but this method needs high time consuming [17].
Taneja et al. used the leave-one-out cross-validation method to
determine k value for each data point and such a method is also
time consuming [14]. Xu et al. used a kinds of support vector
machine to increase accuracy by taking the parameter k into
account act an important role, and analyze its influence [18].
Cheng et al. proposed a novel data-driven method to obtain
unfixed k values for kNN algorithm based on sparse learning [2].

3. Approach

In this section, we present the basic concepts and describe the
proposed method. Finally, we proposed an optimization method
for solving the resulting objective function.

3.1. Notation

In this paper, we denote matrices as boldface uppercase letters,
vectors as boldface lowercase letters, and scalars as normal italic

letters, respectively. Moreover, we denote the Frobenius norm, ℓ2

� norm of a matrix X and ℓ1� norm of a matrix X as

‖X‖F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i‖xi‖22
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j‖xj‖22
q

,

‖X‖2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i ¼ 1

Pm
j ¼ 1

xij
�� ��2s

and‖X‖1 ¼
P

i‖X
i‖2, respectively. We further

denote the transpose operator, the trace operator, and the inverse
of a matrix X as XT , TrðXÞ, and X�1, respectively.

3.2. Self-representation for sparse reconstruction

Given training samples X ¼ x1; x2; :::; xn½ �ARn�m, where n and m
are the number of samples and features, respectively, we use a
linear function to represent each sample xjARm (where j¼1, …, n)
as:

xj ¼
Xn
i ¼ 1

zixiþei ð3Þ

where ziARmand eiARm, respectively, are the dictionary of xiand
the error term. By simple transformation following [22], we
change Eq. (3) into its matrix form as:

X¼ ZXþE ð4Þ
where Z¼[zij]ARn�n, Eq. (4) is a sample of self-representation
model, E is the error term.

In this work, we use the characteristics of self-representation of
the training samples to reconstruct themselves for generating the
representation matrix ZARn�n. To do this, we define the following
objective function:

arg min
Z

‖ZX�X‖2F ð5Þ

where ‖ZX�X‖2Fdenotes the reconstruction error. The matrix Z
reflects the importance of different samples to make the repre-
sentation of the reconstruction error small. Due to Eq. (3) is a
convex function, so we can easily get the solution: Z¼ðXXT Þ�1XX.
The term ðXXT Þ�1 is not always reversible in real application. As
we all know, the ℓ2� norm is used to avoid the irreversible pro-
blem. Thus we use the ℓ2� norm regularization term to avoid this
problem, and the objective function is rewrite as follows:

arg min
Z

‖ZX�X‖2F þμ‖Z‖22 ð6Þ

where μ is a parameter of the ℓ2� norm regularization term. We
can get the solution of Eq. (6): Z¼ ðXXT þμIÞ�1XX, I denote an
identity matrix. The representation matrix Z does not have the
sparsity, and cannot reflect the number of the training samples
with the other adjacent training samples, while the ℓ0� norm
regularization term can produce sparsity to represent X using as
few entries of X. Therefore, we use the ℓ0�norm regularization
term to instead of the ℓ2� norm regularization term, this can be
formally expressed as follows:

arg min
Z

‖ZX�X‖2F þγ‖Z‖0 ð7Þ

where the constant γ is a tuning parameter and ‖Z‖0 is the pseudo
ℓ0� norm. Unfortunately, this criterion is not convex and the
process of searching its solution is NP-hard. Recently, the ℓ1�
norm regularization term has been proved to lead to the sparse
correlation coefficient matrix. Moreover, its optimal solution is a
convex optimization issue. Therefore, we use the ℓ1� norm reg-
ularization term to instead of the ℓ0� norm regularization term
for gaining an optimal sparse representation coefficient matrix Z.
Its objective function is rewritten as follows:

arg min
Z

‖ZX�X‖2F þρ‖Z‖1 ð8Þ

where ρ is a tuning parameter of the ℓ1� norm regularization
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