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a b s t r a c t

This paper is concerned with longitudinal partially linear models (LPLM) with ultrahigh-dimensional covariates
and predictors. As flexible extension of linear regression models by allowing nonparametric intercept function
to capture the overall trend over time, the LPLM are expected to be highly potential statistical models for
analyzing high-dimensional longitudinal data such as longitudinal genetic data and functional magnetic
resonance image data. Feature screening and variable selection are indispensable for LPLM in the presence of
ultrahigh-dimensional covariates such as genetic markers and all pixels in image data. This paper proposes a
two-stage variable selection procedure that consists of a quick screening stage and a post-screening refining
stage, for the ultrahigh dimensional longitudinal partially linear models. The proposed approach is based on the
partial residual method for dealing with the nonparametric baseline function. We establish the sure screening
property of the proposed screening procedure in the first stage. Simulation results demonstrate the validity of
this two-stage method. We further demonstrate the proposed methodology by an empirical analysis of a real
data set collected in a soybean plant longitudinal genetic study.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The partially linear models, as flexible extension of linear
models, have been systematically studied in recent years [1]. The
advantage of these models over linear models lies in the fact that
they allow the intercept to vary with certain covariate, such as
time, instead of being fixed as a constant. For instance, to study the
gene effect on certain phenotype of plants, the dynamic time effect
has to be taken into consideration as any phenotypic trait always
experiences a process of development to form its final outcome.
Another application is in functional magnetic resonance imaging
(fMRI) research, where voxels are also measured over time but the
underlying dynamic pattern is unknown. Under such circum-
stances, the longitudinal partially linear models (LPLM) are usually
applied to capture the nonparametric time effect.

However, with the rapid development of data collecting tech-
nologies, the LPLM often face the challenge of ultrahigh dimen-
sionality. In the longitudinal genetic study, millions of genes or
markers are often studied simultaneously, although only a small
amount might be truly important to the phenotype. In the fMRI
research, the number of voxels under consideration is also fairly
large. Thus a natural question is how to identify the truly relevant
predictors in such ultrahigh dimensional LPLM.

In this paper, this question is addressed on the basis of a two-
stage procedure: (1) reducing the dimension from ultrahigh to
moderate using a fast and efficient independence screening pro-
cedure specifically for LPLM and (2) choosing significant variables
from the screened submodel by a modified variable selection
technique. For the first stage, [2] first advocated the sure inde-
pendence screening (SIS) method for the ultrahigh dimensional
linear models based on the Pearson correlation learning. The sure
screening property was proved, meaning that with an over-
whelming probability, the true predictors would not be missed by
this SIS. Furthermore, due to the fact that the screening procedures
rely on the model assumption to a large extent, various methods
have been proposed for various models. See [3–7], among others.
However, less has been studied for the LPLM. Given the non-linear
complexity of the baseline function in these models, we propose a
more robust approach, called partial residual sure independence
screening (PRSIS), to reduce dimensionality by incorporating the
partial residual technique to the nonparametric part. In the second
stage, the profile variable selection approach is modified for LPLM
to refine the screened submodel from the first stage and to
determine the most significant predictors in the LPLM, or more
specifically, the most significant genes for complex dynamic traits.

The rest of the paper is organized as follows. The two-stage
approach for ultrahigh dimensional LPLM is systematically dis-
cussed in Section 2, including the detailed methodology along
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with the sure screening property of the first screening stage, and
the integrated two-stage algorithm. Then the validity of this
method is illustrated through simulation studies in Section 3, and
the analysis of the functional mapping in soybean plants is pre-
sented in Section 4 to demonstrate its usage. We conclude the
paper in Section 5, and provide the proof for the sure screening
property of the first screening stage in the Appendix.

2. Methodology

In this section, we present a new two-stage approach, called
the partial residual two-stage approach, for the ultrahigh dimen-
sional longitudinal partially linear models (LPLM). A fast screening
procedure is proposed in the first stage specifically for LPLM to
reduce dimensionality, referred to as partial residual sure inde-
pendence screening (PRSIS). In the second stage, a modified
penalized regression is discussed by cooperating the profile least
squared technique to further select important variables.

2.1. Model setting

Suppose the random sample fðtik; xðtikÞ; yðtikÞÞ; i¼ 1;…;n; k¼ 1
;…; Tig is from LPLM

yðtÞ ¼ αðtÞþβTxðtÞþεðtÞ ð1Þ
where n is the sample size, Ti is the number of observations for
subject i, tik is the time point for the kth observation of the ith
subject, y(t) is the response variable, xðtÞ ¼ ðx1ðtÞ;…; xpðtÞÞT is the
p-dim covariate vector at time t, αðtÞ is an unspecified baseline
function of t, β¼ ðβ1;…;βpÞTARp is the ultrahigh p-dim coefficient
vector independent of t, and εðtÞ is the stochastic random noise
with mean 0. In the genetic study, αðtÞ captures the dynamic
phenotype growth, and the covariate vector xðtÞ can either or not
depend on the time t, but often not if it refers to the SNP effect
vector. Define xj(t) (or xj), j¼ 1;…; p, as a relevant or important
predictor if βja0. The true model is denoted as M, i.e.

M¼ fj : βja0;1r jrpg: ð2Þ

2.2. Partial residual sure independence screening (PRSIS)

We first present a new screening approach, called partial residual
sure independence screening (PRSIS) for LPLM in the first stage, to
reduce the ultrahigh dimension p of the predictors to a moderate scale
don. Notice that without the nonparametric baseline function αðtÞ,
(1) is simply a linear model with longitudinal data structure, and the
Pearson correlation can be utilized as a screening criterion [2]. How-
ever, as will be shown in the simulation studies, ignoring αðtÞ, if its
dynamic pattern indeed exists, would miss some important predictors
and thus decrease the power. Therefore, the PRSIS modifies the
Pearson correlation in the following fashion. Consider the sample
version of the partially linear model (1):

yðtikÞ ¼ αðtikÞþβTxðtikÞþεðtikÞ; i¼ 1;…;n; k¼ 1;…; Ti: ð3Þ
Although the repeated measurements within each of the n individuals
are correlated, which is referred to as the within-subject correlation, it
can be neglected in the screening stage aimed to reduce dimension-
ality by implementing a fast and efficient algorithm. Consequently, the
data is pooled into the following format:

t¼ ðtiÞN�1 ¼ ft11;…; t1T1 ; t21;…; t2T2 ;…; tn1;…; tnTn gT

y¼ ðyiÞN�1 ¼ fyðt11Þ;…; yðt1T1 Þ;…; yðtn1Þ;…; yðtnTn ÞgT

X¼ ðxT
i ÞN�p ¼ fxðt11ÞT;…; xðt1T1 ÞT;…; xðtn1ÞT;…; xðtnTn ÞTg

T ð4Þ

where N¼ Pn
i ¼ 1 Ti is the pooled sample size, ti and yi are the ith

elements of t and y, and xT
i is the ith row of the pooled design matrix

X. Therefore, the model becomes

yi ¼ αðtiÞþβTxiþεi; i¼ 1;…;N: ð5Þ
Inspired by [8,9], we take conditional means for both sides of

(5) given ti,

Eðyj tiÞ ¼ αðtiÞþβTEðxj tiÞþEðεj tiÞ; ð6Þ
where y, x and ε refer to the generic random variables corre-
sponding to yi, xi and εi. Then the nonparametric component αðtiÞ
is canceled by subtracting (6) from (5):

yn

i0 ¼ βTxn

i0þεni ; i¼ 1;…;N; ð7Þ
where yn

i0 ¼ yi�Eðyj tiÞ, xn

i0 ¼ xi�Eðxj tiÞ and εni ¼ εi�Eðεj tiÞ.
Therefore, the partially linear model (5) is transformed to the
linear model (7), then the marginal importance of the jth predictor
of x, denoted by xj, can be represented by ρj ¼ corrðxj�Eðxj j tÞ;
y�Eðyj tÞÞ. Thus the dynamic effect of t, which is overlooked by the
ordinary Pearson correlation corrðxj; yÞ between the original xj and
y, is taken into consideration. In practice, the unknown conditional
expectations are estimated by the kernel smoothing method [10]:
for any given t40,

bEðyj tÞ ¼ XN
s ¼ 1

ωsðtÞys; bEðxj j tÞ ¼ XN
s ¼ 1

ωsðtÞxsj; ð8Þ

where ωsðtÞ ¼ Khðts�tÞ=PN
s ¼ 1 Khðts�tÞ with Khð�Þ ¼ h�1Kð�=hÞ and

Kð�Þ is a symmetric kernel function. In this paper, the Epanechni-
kov kernel function is used for simplicity, i.e. KðtÞ ¼ 0:75ð1�t2ÞIðj
t jo1Þ; where I(E) is the indicator function taking value 1 if the
statement E is true and 0 otherwise. The bandwidth h is chosen by
the plug-in method [11]. In this fashion, Eðyj tiÞ and Eðxj tiÞ are
estimated, and hence yn

i0 and xn

i0. Denote the estimates as yn

i and
xn

i . The marginal Pearson correlations bρ j's can then be calculated
with the modified sample points yn

i and xn

i , i¼ 1;…;N:

bρj ¼
ðXn

j �X
n

j ÞTðyn�ynÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXn

j �X
n

j ÞTðXn

j �X
n

j Þðyn�ynÞTðyn�ynÞ
q ; j¼ 1;…; p; ð9Þ

where

yn ¼ ðyn

i ÞN�1 ¼ y1� Êðyj t11Þ;…; yT1
� Êðyj t1T1 Þ;…; yN� Êðyj tnTn

n oT

ðxnT
i ÞN�p ¼ ðXn

1;…;Xn

pÞ ¼ xT
1� ÊðxT j t11Þ;…;xT

N� ÊðxT j tnTn

n oT
ð10Þ

and X
n

j and yn denote the sample means of the N pooled samples.
By ranking bρj calculated for all p x-variables, we select the top d

predictors and the screened submodel index set is

cM ¼ fj : 1r jrp; j bρj j ranks among the top dg: ð11Þ

The submodel size d is taken to be the hard threshold following
[12], i.e. d¼ ⌊N4=5=log ðN4=5Þc. And we can always take more con-
servative d to be ν⌊N4=5=log ðN4=5Þc in practice, where ν is an
integer larger than 1, to enlarge the probability of selecting all the
relevant predictors. One can also adopt the soft threshold in
practice. See [7,13] for details. This screening technique is referred
as partial residual sure independence screening (PRSIS).

Next, we discuss the sure screening property of PRSIS for the
ordinary partially linear models, based on the following two
technical conditions that are standard and commonly used in the
ultrahigh dimensional literature.

(A1) Eðyj tÞ and Eðxj tÞ, where x¼ ðx1ðtÞ;…; xpðtÞÞT, have finite first
and second order derivatives over the support of t which is
denoted by U.
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