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In this paper, the impulsive consensus of multi-agent nonlinear systems with control gain error is further
studied. The paper indicates that the condition in Theorem 1 of the original paper (Ma et al., 2015) [1] is
not correct. To correct the mistake, the new version is given, which deletes one unnecessary coefficient in
the inequality condition in the paper Ma et al. (2015) [1]. Moreover, two modified results (Theorems
2 and 3) are given to increase the practicality. Due to the modification of consensus condition, the new
simulations are also given correspondingly to verify the effectiveness of the proposed methods.
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1. Introduction

In recent years, distributed cooperative control of multi-agent
systems has received considerable attention among scientists for
its wide application in various fields, such as spacecraft formation
flying, sensor networks, and cooperative surveillance [2]. Due to
its potential application, the consensus of multi-agent systems has
been widely investigated by many researches from various per-
spectives [2-15]. Generally speaking, the cooperative control of
multi-agent systems can be categorized into the leaderless con-
sensus or cooperative regulation problem, and the cooperative
tracking problem, where it is desired to synchronize to the
dynamics of a leader node. For leaderless consensus, distributed
controllers are designed for each node (agent) such that all nodes
eventually converge to an unprescribed common value, which may
be a constant or time-varying, and is generally a function of the
initial states of the agents and the communication network
topology [2-6]. For the cooperative tracking problem, a leader
node is considered and acts as a command generator that gen-
erates the desired reference trajectory [7-15].

Many control methods have been developed to realize the
consensus of multi-agent systems, such as observer-based control,
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adaptive control, pinning control, etc. Among these methods,
impulsive control is an efficient method to deal with the dyna-
mical systems which cannot be controlled by continuous control
[16-26]. Moreover, one agent receives the information from its
neighbors only at the discrete time instants in consensus process,
which dramatically reduces the information transmitted between
the agents [27-33]. On the other hand, the disturbance often
happens when the impulsive controller is given [1,34]. Thus, the
consensus of multi-agent systems with impulsive control dis-
turbance (control gain error) is important and significant in real
application.

In the paper [1], a sufficient condition including one scalar
inequality was given to ensure the consensus of multi-agent
nonlinear system with impulsive control gain error. However, the
inequality condition (11) of the paper [1] is not correct, and the
coefficient 1+me(ty) is unnecessary. In this paper, we will correct
the mistake and give the new version of the consensus condition.
Throughout the paper, some common notations and definitions
refer to [1] if there is no special explanation.

2. Problem statement

For the sake of readability, some necessary preliminaries and
descriptions are given as follows.
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Consider N followers with impulsive control input and control
gain error as

Xi(t) = Ax(O) +w i), t # tr, ke Ny =(1,2,..},
Ax;(t) = xi(t;) —Xi(t ) = (B +ABy)ei(ty)

= (b +Aby) <_Z aij(Xi(fk)—Xj(fk))-i-Ci(Xi(fk)—Xo(fk))>, t=ty,

JeNi
(M

where x;(t) = (xi1(t), Xi2(t), ..., Xin(t))T € R" is the state of node i
(i=1, 2, -, N),w: R"-R"is a continuous nonlinear function,
AeR™™ is a known constant matrix. The local neighborhood
synchronization error for node i denotes by e;j(t)= 3 a;j(x;(t)—
jeN;
Xj(1)) + Ci(xi(t) — Xo(t)). By = by I, is the impulsive controlj gain matrix.
The gain error AB, =Abyl, and nonlinear function y : R"—R"
satisfies Assumptions 1 and 2 respectively.

Assumption 1. The parametric
following form,

Abk = m@(tk)bk, (2)

uncertainty Ab, has the

where m > 0 is a known constant, ¢(ty) € R and satisfies |p(ty)| < 1.

Remark 1. The uncertainty Ab, often relates to control gain by. In
Assumption 1, ¢(t;) characterize the change process of Aby, and m
characterize the magnitude of control gain error. Thus, Assumption 1
is reasonable in real systems.

Assumption 2. Continuous nonlinear function y : R"—R" satis-
fies the following condition,

W(x1)—w(x2) = F(x1,X2)(X1 —X2), 3

where ¥(xq,%;) e R™" is the function of vector x; and x,.

Remark 2. Many known nonlinear systems, such as typical
chaotic systems (Lorenz system, Chen system, Rossler systems, and
unified system), satisfy the condition (3) in Assumption 2.

Consider the dynamics of the leader as
Xo(t) = Axo(t) +y(Xo(1)), 4)

where xo(t) = (Xo1(t), X02(b), ..., Xon(t))T € R* is the state of the
leader. We refer to ¢; >0 as the weight of edge from the leader
node to node i (ie{1,...,N}). ¢; >0 if and only if there is an edge
from the leader node to node i, and C = diag{c;} € R"*N.

Subtracting (4) from (1), we can get the impulsive error system
described as

5i(t) = A5i(t)+ ¥ (xi(t). Xo(1)5;. 5
Ab;i(ty) = (b +Aby)e(ty).

The compact form of (5) is
5(6) = (In ® A3(0)+ P (x(1), Xo(£))S(0), )
45(tk) = (bk +Abk)((L+ C) ® In)5(tk),

where
8(6) = (87(8), 83(0), -, (D), 8i(D) =Xi(6)—Xo(0),

P(x(t), Xo(t)) = diag{ ¥ (x1(t), Xo(1)), -+, P (Xn(£), X0 ()},
XO=[x{(©), x5(6), -~ x{(O] € R™, Xo(t) =1y ® Xo(t) e R™.

The cooperative tracking problem is to make all follower nodes
synchronize to the state trajectory of leader node if for any initial
conditions, i.e., tlimé(t) =0.

For simplicity, in the rest of the paper, all variables will be

denoted without the time argument t, i.e., x: =x(t)x; : = x;(t),
o: Zé(t), 5,‘ : =6,‘(f).

3. Main results
In this section, some new results are derived to correct
Theorem 1 in [1].

Theorem 1. Assume that Assumptions 1 and 2 hold. If there exists
& > 1 such that

(Aa+Ap)(t = t— 1)+ In(4E) <O, (7)
where A4, Ay and J, are the maximum eigenvalue of A+AT, P(x,

ol -

X0)+¥ (x.Xo) and (bx(1+me(ti)(L+C)+In)" (be(1+me(ti))(L+C)
+1Iy) respectively. Then the consensus of multiagent systems (1)
can be realized under distributed impulsive control.

Proof. Consider a Lyapunov function V(t) as
V(t)=5"6. 8)

For t e (t;_1,t], ke N,, the Dini’s derivative of V(t) along the
trajectory of (6) is given as

D V(t)=6 65+6"6
="y ® A+A)+P(x,X0)+ 7 (X,X0)5

<Aa+Ap)d'6
=(Aa+Ap)V(D). )
Therefore, one can further get
V() <Vt )exp((Aa+Ap)(t —tr_1)). (10)

When t = t;, one gets
Vet =8 Hst)
= (b +Ab)(L+0) ® In)+1a)3(tr) (b +Ab)((L+C)
®1In)+1nn)6(E1))
=6 (b +AbI(L+O)+IN) (b +Ab(L+C)+In)
®In)S(tr) < AV(ty). 1)
Note that the last inequality of (11) uses the fact of Kronecker

product, i.e., Amax(lI ® I,) = Amax(IT), where I1 is a square matrix.
Let k=1 in the inequality (10), i.e., for t e (to, t1], one gets

V(t) < V(t5 )exp((Aa +Ay)(t —to)),
which leads to
V(ty) < V(t5 )exp((Aa +Ay)(t1 —to)),
and from (11), it further yields
V(t]) < MV(t) < V(g exp((Aa+Ay)(t1 —to)),
Similarly, for t e (t1, t3],
V(t) < V(t] )exp((Aa+Ap)(t—t1))
< V(td)exp((Aa+Aw)(t —to))exp((Aa +Aw)(t —t1)),
< V(£ )exp((Aa+Aw )t — to))
In general, for any t e (ty, ty4 1], it follows from (7) that
V(t) < V(5 Hexp((Aa + Ap)(t—tr)
< Az AV (g )exp((Aa+ Ay )(t —to))
= V(tg )A1exp((Aa+Ap)(t1 — to))A2€XP((Aa + Ay )(t2 — 1))
x AkeXp((Aa + Ap)(tx — ti_1))eXp((Aa + Ap)(t — £r))
1
< FV(QT )eXp((Aa+Aw)(E—t1))

Since (A4+Ay) and (t—ty) are finite constants, and L —0 as

k—oo(i.e., t—>o0). It is easy to conclude that the global neighbor-
hood error 6 is globally exponentially converges to zero, namely,
all nodes x; globally exponentially synchronize to leader node x,.
This completes the proof. o
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