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a b s t r a c t

This paper deals with the robust adaptive observer design for nonlinear dynamic systems that have an underlying
multiple time-scales structure via different time-scales neural network. The Lyapunov function method is used to
develop a novel stable updating law for the multi-time scales neural networks model and prove that the state
error, output estimation error and the neural network weights errors are all uniformly ultimately bounded
around the zero point during the entire learning process. Furthermore, passivity-based approach is used to derive
the robust property of the proposed multi-time scales neural networks observer. Compared with the other
nonlinear observers without considering the time scales, the proposed observer demonstrates faster convergence
and more accurate properties. Two examples are presented confirming the validity of the above approach.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In many practical systems, only the input and output of a sys-
tem are measurable. Therefore, estimating the states of a system
plays a crucial role in modeling, monitoring or controlling the
system. Linearization or quasi-linearization observer design
methods limits the estimation accuracy for the practical nonlinear
systems. Hence, different types of nonlinear observers have been
developed during the past decade, i.e. the extended Luenberger
observers [1], extended Kalman filter [2,3], sliding mode observer
[4–7], and robust observer [32]. A comprehensive survey of the
nonlinear observer is given in [8]. However, most of this work
relies on exact a priori knowledge of the system nonlinearities.

The adaptive learning ability neural networks (NN) makes them
powerful tools for identification [15,17,54], observation [9-20,31,37–
39,42], monitoring [53] and control [47–49] of nonlinear system
without any a priori knowledge about the system dynamics. Recent
research [50,51] also shows that reinforcement learning may over-
come the need for an exact model and achieve the optimality at the
same time. The previous NN observer design can be roughly classified
into three categories according to the NN structure, i.e. radial basis
function (RBF) based observer, high order neural networks (HONN)
based observer and dynamic neural networks (DNN) based observer.

Linear-in-parameter RBF neural network was proposed to estimate the
states of an affine SISO nonlinear system [9] and non-affine nonlinear
systems [10] with the strong strictly positive real (SPR) condition
imposed on the output error equation. In [11,12], a linear-in-parameter
RBF based observer with the open-loop structurewas proposed for the
MIMO system, where the SPR assumption was relaxed. Furthermore,
RBF based observers without strictly positive real (SPR) or any other
strong assumptions were proposed in [13,14,37,42]. However, the
static approximation of the gradient has been used to solve the
dynamic back propagation problem like [13,37], which is just an
approximate treatment and easy to fall into local optimum. Moreover,
the main drawback of the RBF neural networks is that the weights'
updating do not utilize any information on the local data structure and
the function approximation is sensitive to the training data [55]. So far,
there exist mainly two ways to improve the approximation ability of
the NN-based observer design, i.e. high-order neural network (HONN)
based observer and DNN based observer. For instance, the model free
HONN based observer was proposed in [38,39] and time delay was
considered in [31]. However, the HONN has the curse of dimension-
ality problem with the increase of order. The DNN approach, incor-
porating the feedback, provides an effective instrument to solve awide
spectrum of control problems such as identification, state estimation
and trajectories tracking [15]. In [16], a new DNN observer based on
practical stability theory was proposed to demonstrate the stability of
weights trajectories. In [52], new delay-dependent stability criteria for
DNN with time-varying delay are derived by dividing the delay
interval into some variable subintervals employing weighting delays.
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In [17], a new learning procedure with a relay term to accelerate and
improve the corresponding learning process. However, off-line train-
ing based on mean least square (MLS) method was required to select
the nominal parameters in [16,17]. In [19], passivity theory is used to
design the DNN observer and controller of partially known SISO
nonlinear systems. A robust asymptotic DNN observer with time delay
was proposed in [20]. Among these DNN observers design, the
updating laws are too complicate and a linear approximation was also
used via taylor series expansion to facilitate the stability analysis,
which prevent such observers to real-world application.

All of the aforementioned neural networks observers do not con-
sider the time-scales separation. Many practical nonlinear physical
systems naturally possess the time-scale separation phenomena. Such
as the car suspension system can be considered as a two-time-scale
nonlinear dynamic system which have relations to road holding and
ride quality respectively [30,35]. The plant perturbations originate
from variations of physical parameters or arise because of a deliberate
reduction in the complexity of a higher order mathematical model of
the plant make it difficult to obtain the accurate mathematical model
of this kind of nonlinear systems, which renders the observer design
more difficult. Singularly perturbed methods can be used to obtain an
approximate estimation of this nonlinear system via reduced-order
observer design [33,34,36]. However, a basic requirement of pertur-
bation methods is that the nonlinear system is completely known.
This inspires the issue of model free observer design for nonlinear
dynamic systems that have an underlying multiple time-scales struc-
ture. Recent results show that neural network with different time-
scales are very effective for modeling the complex nonlinear system
when we have incomplete model information [21,22].The passivity-
based approach was used to derive stability conditions for dynamic
neural networks with different time-scales in [23] and to prove that a
gradient descent algorithm for weight adjustment was stable and
robust to any bounded uncertainties in [24]. In our previous work [25],
the indirect adaptive control for the nonlinear systems via multiple
time scales neural networks has been established. However, it relies
on the availability of all the systems states. This may be a rather
stringent requirement for practical applications.

To the best of our knowledge, the design of nonlinear observer for
model free nonlinear system including fast and slow phenomenon via
multi-time scales neural networks has not been tackled within the
control community. The main contributions of this paper are listed in
the following. (1) It is the first time to investigate the nonlinear
observer design via different time scales neural network, which has
faster convergence speed compared with the common neural network
observer; (2) By defining a Lyapunov function candidate based on
quadratic functions of the weights and the estimation errors, a novel
on-line updating law is introduced which can guarantee uniformly
ultimately boundedness of the estimation error and weights error
during the learning process. The proposed updating law can guarantee
convergence without having the usual problems, such as local minima
of the gradient [13,37], solving any LMI equation [52], Taylor's formula
approximation [15] [43] and choosing the center vectors and width
vectors of ‘Gaussian’ functions [14,44–46]. Moreover, the new learning
law is designed in multi-time scales learning process rather than the
traditional unique time scale and it can ensure fast learning con-
vergence and closed-loop stability. (3) Mathematical proof of passivity
for error dynamic system (map from approximation error and tuning
parameters to state estimation) and neural network tuning system
(map from tuning parameters norm and approximation error to state
estimation) clearly indicates passivity of the robust property of the
proposed multi-time scales neural networks observer. It is concluded
that only the boundedness of input and output signals assure state
bounded without any observability requirement, which makes the
proposed technique free from observability requirement. This fact
makes the proposed observer suitable for many complex applications
where other design procedures might be restricted. The simulation

results of two examples demonstrate faster convergence and more
accurate properties of the proposed observer compared with the other
observers without considering the time scales property.

The paper is organized as follows. In Section 2, some preliminary
definitions are given. The proposed multi-time scales neural net-
work observer is introduced in Section 3. Section 4 analyzes the
robustness of the proposed observer based on the passivity
approach. The simulation results of two examples are presented in
Section 5 and the conclusion of this paper is presented in Section 6.

2. Preliminaries

2.1. Norm and trace property

The norm of a vector xARn and the L2 norm of a matrix AA
Rm�n are denoted as

‖x‖¼
ffiffiffiffiffiffiffi
xTx

p
‖A‖2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmax½ATA�

q
where λmax½U � denotes the largest eigenvalue of the positive

definite or positive-semidefinite matrix. We denote the smallest
eigenvalue of a positive definite matrix ½U � by λmin½U �. Given A¼ ½
aij� and BARm�n, the frobenius norm is defined by

‖A‖2F ¼ trðATAÞ ¼ P
a2ij

where trðU Þ denotes the trace of ðU Þ. The associated inner
product is

A;B
� �

F ¼ trðATBÞ
The following properties of trace will be used to develop the

updating law in this paper
1) trðABÞ ¼ trðBAÞ
2) trðAþBÞ ¼ trðAÞþtrðBÞ for any A;BARn�n

3) trðyxT Þ ¼ xTy for any x; yARn�1

The L1 norm is defined as ‖x‖1 ¼ sup
tZ0

xðtÞ
�� �� and we say that x

AL1 when ‖x‖1 exists.

2.2. Stability and passive systems

Definition 1. [28] Consider the nonlinear system _x¼ f ðx;u; tÞ;y¼
hðx; tÞ with xðtÞARn: The solution is called uniformly ultimately
bounded (UUB) if there exists a compact set ΩARn such that for all
xðt0Þ ¼ x0AΩ; there exist δ40 and t040 such that ‖x‖oδ, 8 tZt0.

Definition 2. [26] Consider a class of nonlinear systems described
by _x¼ f ðx;u; tÞ;y¼ hðx; tÞ with the state xðtÞARn; input uðtÞARm,
output yðtÞARm, f : ARn � Rm-Rn, h : ARn � Rm-Rm, then a sys-
tem is said to be passive if the following inequality holds

_LðtÞryTu�gðtÞ
where the nonnegative function LðtÞ : Rn-R is called storage

function, gðtÞ is positive semi-definite function of the state. One
can further get the following inequalityR T

0 yT ðτÞuðτÞdτZ R T
0 gðτÞdτ�γ2

for all TZ0 and some γZ0:
A system is dissipative if it is passive and in addition

Z T

0
yT ðτÞuðτÞdτa0 implies

Z 1

0
gðτÞdτ40

State strict passivity (SSP) is defined as when a special sort of
dissipativity occurs if gðtÞ is a monic quadratic function of ‖x‖ with
bounded coefficients, where xðtÞ is the internal state of the system.
Then the L2 norm of the state is bounded in terms of the L2 inner
product of output and input (i.e. the power delivered to the system),
which can be used to conclude some internal bounded properties of
the system without the usual assumptions of observability.
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