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a b s t r a c t

By resorting to a new matrix product, called semi-tensor product of matrices, this paper investigates the
minimum stable set and core of graph, and also presents a number of results and algorithms. By defining
a characteristic logical vector and using matrix expressions of logical functions, a new algebraic repre-
sentation is derived for the externally stable set. Then, based on the algebraic representation, an algo-
rithm is established to find all the externally stable sets. According to this algorithm, a new necessary and
sufficient condition is obtained to determine whether a given vertex subset is an absolutely minimum
externally stable set or not. Meanwhile, a new algorithm is also obtained to find all the absolutely
minimum externally stable sets. Finally, the graph core, which is simultaneously externally stable set and
internally stable set, is investigated. Here the internally stable set requires that internal nodes of this set
are all disconnected with each other. Using semi-tensor product, some necessary and sufficient condi-
tions are presented, and then an algorithm is established to find all the graph cores. The study of
illustrative examples shows that the results/algorithms presented in this paper are effective.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The development of graph theory was largely inspired and guided
by the famous conjecture called Four-Colour Conjecture. The con-
jecture was solved by Appel and Haken in 1976 [1], which marked a
big turning point in the history of graph theory. Since then, graph
theory has experienced rapid and explosive growth, due to its
important role in the applied mathematics [2–5]. With the rapid
development of computer science and combinational optimization
[6,7], the versatility of graph makes them indispensable tools to
analyze and design the large-scale communication networks [8].

Recently, graph theory has also been widely used in the sys-
tematical analysis of neural networks, complex networks, and multi-
agent systems, which are some of the hottest topics in the control
field. For example, the Laplacian matrix of graph plays an extremely
important role in control protocol designs for multi-agent with linear
dynamics and synchronization of complex networks. Many funda-
mental and landmark results have been obtained regarding the
Laplacian matrix [9]. A spanning tree T of an undirected graph G is a

subgraph that includes all of the vertices of G. The importance of
spanning trees of various special types has been evident, which are
widely used in the analysis of multi-agent systems.

The minimum (externally) stable set is another basic and classical
problem in graph theory, which has wide applications in competitive
markets, stochastic systems, clustering and so on [10–13]. Externally
stable set requires that each node which is not belonging to the set is
connected at least one node belonging to the set [14]. For example,
externally stable set can be used to analyze the stability of 2-D sys-
tems [15]. As an opposite problem of graph, the investigation of
internally stable set has been studied in [16], which can be seen as an
independent set, or a vertex packing of graph. Externally stable set and
internally stable set are two important and independent properties in
graph theory.

Recently, a new powerful matrix product, called semi-tensor pro-
duct of matrices was proposed by Cheng and his colleagues [17,18].
This new matrix product provides a way to multiply two matrices
with arbitrary dimensions [17]. By resorting to semi-tensor product, a
Boolean function can be converted into an algebraic form, and then a
Boolean network can be expressed as a discrete algebraic system [17].
This original set-up opens new perspectives on systematical analysis
of many problems for Boolean networks. And up to now, many fun-
damental and landmark results have been presented on calculating
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fixed points and cycles of Boolean networks [17,19], on the controll-
ability and observability of Boolean networks [20–23], on the stability
of Boolean networks [24], on the optimal control of Boolean control
networks [25], on the synchronization of Boolean networks [26–32],
on graph coloring problems [16], on Kalman decomposition of Boo-
lean control networks [33], on networked evolutionary games [34], on
nonlinear feedback shift registers [35] and so on.

It should be noted that one main drawback of the algebraic
state expression of Boolean networks is its computational com-
plexity. The algebraic state representation converts a Boolean
network with n state-variables into a state-space of size 2n. Thus,
any algorithm based on this approach has an exponential time-
complexity. Moreover, many problems like determining fixed
points and observability of Boolean control networks have already
been proved to be NP-hard. Hence, the computational complexity
is intrinsic and also independent of the models adopted to
describe Boolean networks. The main contributions of this paper
are as follows: (i) some algebraic descriptions have been estab-
lished to deal with the minimum stable set and graph core; (ii) a
set of theoretical results and algorithms have been presented to
determine the minimum stable set and graph core.

The rest of this paper is structured as follows. In Section 2, we
present some preliminaries on semi-tensor product, k-valued
logical variables, pseudo-Boolean function and graph theory, and
definitions of (absolutely minimum) externally stable set and
(absolutely maximum) internally stable set. In Section 3, we
investigate (absolutely minimum) externally stable set and graph
core, and then obtain some necessary and sufficient conditions
and efficient algorithms to find the externally stable sets and
graph cores. The study of numerical examples shows that the
obtained results/algorithms are very effectiveness. The conclusion
is presented in Section 4.

Notations: The standard notations will be used in this paper.
Throughout this paper, Rn�m denotes the set of real matrices of
order n�m, and Nþ denotes the positive integers. 1n denotes the
n-dimensional column vector with all entries being 1, and Ik is the
identity matrix of order k. δkj is the j-th column of identity matrix Ik,
and Δk denotes the set of all k columns of Ik. Let ColjðAÞ be the j-th
column of matrix A, and ColðAÞ be the set of columns of matrix A.

2. Some preliminaries

In this section, we give an outline of semi-tensor product of
matrices, k-valued logical variables, pseudo-Boolean function and
graph theory, which will be used in the following sequels.

Now we are in the position to give the definition of semi-tensor
product of matrices.

Definition 1 (Cheng et al. [18]). For a n�m matrix A and a p� q
matrix B. Let l be the least common multiple of m and p. Then the
semi-tensor product of A and B is defined as follows:

A⋉B¼ ðA � Il=mÞðB � Il=pÞ:

Here � is the Kronecker product of matrices. We can see that
semi-tensor product of matrices is a generalization of conventional
matrix product. So sometimes we can omit “⋉” for convenience.

Now we present some fundamental facts about semi-tensor
product and logical matrices.

Definition 2 (Cheng and Qi [17]). An mn�mn matrix W ½m;n� is
called a swap matrix, if it is constructed in the following way: label
its columns by the following sequence ð11;12;…;1n;…;m1;m2;…
;mnÞ and similarly label its rows by the following sequence
ð11;21;…;m1;…;1n;2n;…;mnÞ. Then its element in the position

ððI; JÞ; ði; jÞÞ is assigned as

wðI;JÞ;ði;jÞ ¼ δI;Ji;j ¼
1; I ¼ i; J ¼ j;

0 otherwise:

�
ð1Þ

When m¼n, we denote W ½m;n� by W ½n� or W ½m�.

Lemma 1 (Cheng and Qi [17]). Let XAΔm and YAΔn be two col-
umns. Then

W ½m;n�⋉X⋉Y ¼ Y⋉X;W ½n;m�⋉Y⋉X ¼ X⋉Y :

In this sequel, we denote “True” or “False” by “1” or
“0”AD¼ f1;0g. In this paper, we use the following two logical
vectors to represent them:

T ¼ 1� δ12; F ¼ 0� δ22;

where δni denotes the i-th column of identity matrix In. Similarly,
for a k-valued logical variable zADk, we can equivalently expres-
sed by the following logical vectors:

k� i
k�1

� δik; i¼ 1;…; k;

where

Dk ¼ 1;
k�2
k�1

;…;
1

k�1
;0

� �
:

Here, we set Δn ¼ fδin j1r irng for notational ease. Then, when
n¼2, we denote Δ≔Δ2, and Δ�D. A n�m matrix A is called a
logical matrix if A¼ ½δi1n ;…; δimn � and for simplicity, we can express
A by A¼ δn½i1;…; im�. Denote the set of n�m logical matrices by
Ln�m.

Lemma 2 (Cheng and Qi [17]). Let f : ðΔ2Þn-Δ2 be a Boolean
function. Then there exists a unique matrix FAL2�2n such that
f ðσ1;σ2;…;σnÞ ¼ F⋉σ1⋉σ2…⋉σn, for every ðσ1;σ2;…;σnÞAðΔ2Þn. F
is called the structure matrix of f.

Example 1. Consider the following two logical functions f ðx1; x2Þ
¼ x13x2 and gðx1; x2Þ ¼ ð:x1Þ3x2. Then, according to Lemma 2,
we can obtain its corresponding structure matrices Mf and Mg

satisfying:

f ðx1; x2Þ ¼Mf x1⋉x2 ¼
1 1 1 0
0 0 0 1

� �
x1⋉x2;

gðx1; x2Þ ¼Mgx1⋉x2 ¼
1 0 1 1
0 1 0 0

� �
x1⋉x2: ð2Þ

Here, we present the structure matrices of some basic logical
operators (Negation: :, Mn ¼ δ2½2;1�; Conjunction: 4 , Mc ¼
δ2½1;2;2;2�; Disjunction: 3 , Md ¼ δ2½1;1;1;2�; the dummy matrix:
Ed ¼ δ2½1;2;1;2�), which has the following property: for any two
logical variables u and v, we have Eduv¼ v, or EdW ½2�uv¼ u. The
group power-reducing matrix: Φn ¼ δ22n ½1;2nþ2;2 � 2nþ3;…; ð2n

�2Þ � 2nþ2n�1;22n� satisfies σ⋉σ ¼Φnσ, for σAΔ2n .
If ⋉n

i ¼ 1σi ¼ δk2n , how can we calculate each σi, i¼ 1;…;n from

⋉n
i ¼ 1σi ¼ δk2n? Then, the following result shows how to calculate σi

for all i. Firstly, we define the following matrices, which will be
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