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a b s t r a c t

In this paper, an adaptive predictive control algorithm is employed to controlling a class of continuous
stirred tank reactor (CSTR) system. The main contribute of this paper is that the CSTR system are in
discrete-time form and non-symmetric dead-zone inputs are considered here. The design parameters of
control algorithm for the CSTR systems are not so much than before, such that the calculated amount of
the control algorithm is less than before. By considering the Radial basis function neural networks
(RBFNN), the unknown functions are approximated, the mean value theorem is utilized in the algorithm
design process. Based on the Lyapunov analysis method, and choosing the design parameters appro-
priately, all the signals in the closed-loop system are proved to be semi-global uniformly ultimately
bounded (SGUUB) and the tracking error is converged to a small compact set. A simulation example for
CSTR systems is studied to demonstrate the effectiveness of the proposed approach.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

A great development of intelligent control theory have hap-
pened in recent years. In these achievements, NNs or FLS are uti-
lized to approximate the unknown nonlinear functions in the
discrete-time or the continuous systems developed quickly. Spe-
cially, in systemwith time-varying input delays or fault [1–4], with
the help of the Takagi–Sugeno (T–S) fuzzy model, a pseudo-
predictor feedback approach method, or even the augmented
sliding mode observer approach method, appropriate controllers
are established, then the stability of the systems are proved [5–
11,53]. In comparison with the intelligent control without adap-
tive, with the help of approximators, the adaptive control could
deal with the uncertain of the systems better [12–15]. With the
certain conditions, several approximation methods have been
proven that, such as fuzzy systems, polynomials [16,17], splines
[18] and NNs [19–22] have function approximation abilities and
have been constantly used as function approximators. In [23], in
order to obtain the nominal closed-loop system, a nonlinear state
feedback controller [24,25] is computed by exact linearization of
the process model. By approximately linearizing the process
model, a nonlinear gain-scheduled controller [26] is designed.

Whereas the previous works mainly focus on the nonlinear
systems in continuous-time form. But the systems we often run
across in the industrial production are always in discrete-time
form. The algorithms of the continuous systems cannot be used
directly to stabilize the systems in discrete-time form.

The study of discrete system has scored important achieve-
ments, and some adaptive control algorithms were introduce in
[27–32], with the help of neural network the unknown functions
of these discrete-time systems could be approximated, then, the
appropriate controllers are introduced, and the stability of the
closed-loop discrete-time systems are guaranteed. But, because of
these algorithms need to satisfy the strict feedback form or
matching condition [33–36,52], so they could not satisfy the sta-
bilization of the systems of pure feedback form [37,38].

In the past few years, the development of CSTR system has
made remarkable achievements. In [39], an adaptive tracking
control is considered for a class of general nonlinear systems using
multilayer neural networks [40], and the controller is illustrated
through an application to composition control in CSTR systems. A
nonlinear adaptive tracking controller for a class of general time-
variant nonlinear systems is applied to controlling CSTR systems in
[41], and the asymptotic convergence condition [42] of the non-
linear adaptive control system is guaranteed by the Lyapunov
direct method. An adaptive fuzzy temperature controller is pro-
posed for a class of CSTRs based on input–output feedback line-
arization in [43], and the concentration dependent terms and
other unknown system parameters in the control law are
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estimated by a fuzzy logic system [44]. Using temperature mea-
surement, an adaptive fuzzy controller, based on backstepping
technique [45] and the observability concept is proposed in [46]
for temperature control of a general class of CSTRs. Considering
adaptive backstepping and neural network (NN) approximation
techniques, an adaptive nonlinear controller is investigated for the
CSTR systems in [47]. Based on the conventional Luenberger
observer, a variable structure observer is introduced in [48], with
the help of a nonlinear controller, the stability of the CSTR system
is proved. An uncertainty observer based on the differential alge-
braic techniques is introduced to deal with the problem of the on-
line estimation of the reaction heat in a CSTR from temperature
measurements in [49,50]. In [51] an adaptive predictive control
algorithm is applied to control a class of SISO CSTR system in
discrete time. The CSTR discrete-time system in this paper is
considered with dead-zone, but the amount of the calculation of
the control algorithm is too large, so it need a long to reach the
stability.

In this paper, the CSTR discrete-time systems with dead-zone
in pure-feedback form will be studied. Considering the fact that,
some functions and the dead-zone in the system are unknown, so
the system is transformed into a prediction form firstly, in this way
the quantity of calculation will be reduced. Then, with the help of
RBFNN, the unknown function and dead-zone are estimated. Fur-
thermore, an appropriate controller and adaptive law are con-
structed for the transformed system. Finally, the closed-loop sys-
tem is stable in the sense that SGUUB and the output tracking
errors converge to a bounded compact set. The feasibility of the
proposed method is verified by a simulation example.

2. Problem statement

2.1. System description

Consider the CSTR system in discrete-time form with unknown
non-symmetric dead-zone:

x1 kþ1ð Þ ¼ ↓x1 kð Þþ �x1 kð ÞþCa 1�x1 kð Þð Þ↓� eαx2 kð Þ= αþ z2 kð Þð Þ� �
T

x2 kþ1ð Þ ¼ ↓x2 kð Þþ �x2 kð Þ↓þBCa 1�x1 kð Þð Þe
γx2 kð Þ

γ þ x2 kð Þ↓�Cr x2 kð Þ�D u kð Þð Þð Þ
� �

Tþd1 kð Þ

y¼ ↓x1 kð Þ

8>>><
>>>:

ð1Þ

where x1 kð Þ is the dimensionless concentration at time instant k
and the dimensionless temperature at time instant k is denoted by
x2 kð Þ, Ca and B are Damkohler number and dimensionless heat of
reaction, respectively; Cr denotes dimensionless cooling rate, and
sampling period is T , d1 kð Þ is added to represent an external dis-
turbance, which is bounded d1 kð Þ

�� ��od1. D u kð Þð Þ denotes the tem-
perature of the dimensionless coolant, which is related to the
control input u kð Þ through the unknown non-symmetric dead-
zone. The non-symmetric dead-zone D u kð Þð Þ is described as

D u kð Þð Þ ¼
mr u kð Þ�brð Þ; if u kð ÞZbr
0; if�blou kð Þobr
ml u kð Þ�blð Þ; if u kð Þrbl

8><
>: ð2Þ

where mr ml,bl and br are positive constants. The constants ml and
mr stand for the right and left slope of the dead-zone characteristic
and are known. The constants bl and br represent the breakpoints
of the input nonlinearity.

The dead-zone input may be written as:

D uð Þ ¼m kð Þu kð Þþb kð Þ ð3Þ

where

m kð Þ ¼
mr kð Þ; if u kð Þ40
ml kð Þ; if u kð Þr0

(
ð4Þ

and

b kð Þ ¼
�mr kð Þbr kð Þ; if u kð ÞZbr
�m kð Þu kð Þ; if�blou kð Þobr
ml kð Þbl kð Þ; if u kð Þr�bl

8><
>: ð5Þ

It is obvious that m kð Þ is known, let m ¼ min ml kð Þ;mr kð Þð Þ,
m¼ max ml kð Þ;mr kð Þð Þ, b¼ max mrbr ;mlblð Þ, b ¼ min mrbr ;mlblð Þ.
In this paper, RBFNN will be employed to approximate the
unknown functions of the system and the approximation property
will be given in the following subsection.

An adaptive RBFNN control algorithm will be developed in the
following section, so that the tracking error converges to a small
compact set and all the signals in the closed-loop are SGUUB.

2.2. RBFNN approximation property

Based on certain conditions, several methods can be used to
approximate the unknown functions, such as polynomials, splines,
NN, fuzzy logic etc. were well-developed. In this paper, the
unknown function y kð Þ will be approximated by the RBFNN

yN k; τð Þ ¼ωTτ kð Þ ð6Þ
where kARl is the input of the RBFNN, ω¼ ω1;⋯;ωn½ �T is the
weight vector, n denotes the number of the NN node, τ kð Þ ¼
τ1 kð Þ;⋯; τn kð Þ� �T is the smooth basis, where τi kð Þ is in the form of
Gaussion function

τi kð Þ ¼ exp
� k�ζi
� �T k�ζi

� �
ν2i

" #
; i¼ 1;⋯;n ð7Þ

where ζi ¼ ζ1;⋯; ζl
� �T denotes the center of the Gaussion func-

tions and vi is the width of the Gaussion functions.
Noticing the fact that any function can be approximated by

Eq. (6)

yi kð Þ ¼ω�T
i τi kð Þþεi kð Þ ð8Þ

where ω�
i denotes the ideal constant weight, and the approxima-

tion error εi kð Þ satisfies that εi kð Þ
�� ��rεM , with εM40.

The ideal weight vector ω�
i , an “artificial” quantity required for

analytical purposes, is defined as

ω�
i ¼ arg min

ðωi ARlÞ
sup
tAΩt

ωT
i kð Þτi�y kð Þ

�� ��" #

3. System transformations

In order to facilitate expression, we denote that

f 1 x1 kð Þ; x2 kð Þð Þ ¼ x1 kð Þþ �x1 kð ÞþCa � 1�x1 kð Þð Þe
αx2 kð Þ
αþ x2 kð Þ

� �
T ð9Þ

f 2 x1 kð Þ; x2 kð Þ;D u kð Þð Þð Þ
¼ x2 kð Þþ �x2 kð ÞþBCa 1�x1 kð Þð Þ�
� e

αx2 kð Þ
αþ x2 kð Þ �λ x2 kð Þ�D u kð Þð Þð Þ

�
T ð10Þ

Then, (1) can be rewritten as:

x1 kþ1ð Þ ¼ f 1 x1 kð Þ; x2 kð Þð Þ
x2 kþ1ð Þ ¼ d1 kð Þþ f 2 x1 kð Þ; x2 kð Þ;D u kð Þð Þð Þ
y¼ x1 kð Þ

8><
>: ð11Þ
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