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a b s t r a c t

A neural-network-based distributed control algorithm is established for bipartite consensus of the
nonlinear multi-agent systems with time delays. By using a backstepping technique, a desired reference
signal is introduced. Then, neural networks are used to learn the unknown nonlinear dynamics of the
multi-agent systems. In order to eliminate the effects of time delays, the information of a constructed
Lyapunov–Krasovskii functional is included in the distributed control algorithm. However, it can induce
singularities in the distributed control algorithm. Therefore, a σ-function is utilized to circumvent this
problem. With the developed distributed control algorithm, bipartite consensus can be reached if the
communication graph is structurally balanced. Finally, simulation examples are conducted to demon-
strate the validity of the main theorem.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multi-agent systems have attracted a lot of attention during the last
decade. Variety of problems studied includes optimal control problems
[1–5], output-based control problems [6–9], containment problems
[10,11], formation problems [12–14], event-triggered problems [15,16]
and consensus problems [17–30]. For more details, refer to the survey
papers [31–35] and the references therein. However, the commu-
nication weights of multi-agent systems in all the papers above are
nonnegative and they have been fully investigated. Due to the exis-
tence of negative communication weights, bipartite consensus is a
new branch of traditional consensus problems. Therefore, it is worthy
of investigating how to design distributed control algorithms for
bipartite consensus problems.

In many physical scenarios, it is reasonable to assume that
some of the agents are cooperative while the rest are competitive.
For example, one community can be divided into two clusters
holding the opposite opinions as shown in Fig. 1. In [36], negative
weights were introduced to the communication topology and
bipartite consensus can be reached in the presence of antagonistic

interactions. However, it only dealt with the simplest situation
where the first-order dynamics of each agent was equal to the
control input. Subsequently, bipartite consensus problems were
extended to formation control [13] and directed signed networks
[37] with the same dynamics. In [38], the dynamics of the multi-
agent systems were high-order and bipartite consensus can be
reached under the stabilizability assumption with an equilibrium
between two fully competing groups. However, none of them
takes time delays into consideration. Due to the limit of the
communication capability, time delays are ubiquitous in physical
implementations and they will induce instability. Furthermore, the
unknown nonlinear dynamics are considered in this paper to
generalize bipartite consensus problems to a complex external
environment. Therefore, it is important to investigate bipartite
consensus of nonlinear time-delayed multi-agent systems.

In [39], adaptive neural control was introduced to solve the
uncertain MIMO nonlinear systems. In [17] and [18], a decentralized
adaptive control with neural networks (NNs) was proposed for multi-
agent systems with unknown dynamics, which made great contribu-
tions to the studies of nonlinear multi-agent systems. A neural net-
work technique is a powerful tool for learning the unknown dynamics
[40]. In [41], an adaptive neural control protocol was utilized for a class
of strict-feedback nonlinear systems with unknown time delays. In
[42], a Lyapunov–Krasovskii functional and Young's inequality were
used for the consensus of time-delayed multi-agent systems. We
borrow the technique of Lyapunov–Krasovskii functional from [41,42]
to eliminate the negative effects of time delays. However, this tech-
nique will induce singularities in the distributed control algorithm.
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Thus, we utilize a σ-function to deal with this problem. Furthermore,
to the best of authors’ knowledge, it is the first time to investigate
bipartite consensus of the time-delayed nonlinear multi-agent systems
of second order with the σ-function developed. The main contribu-
tions of this paper are listed as follows:

(1) A distributed control algorithm with neural network techni-
que is developed to achieve bipartite consensus of the non-
linear time-delayed multi-agent systems.

(2) A σ-function is introduced to circumvent the singularities in
the distributed control algorithm and the backstepping tech-
nique is utilized to design a reference signal which can reduce
the difficulty of achieving bipartite consensus.

(3) A Lyapunov–Krasovskii functional is introduced to eliminate
the negative effects of time delays and enhance the reliability
of the learning capability of NNs.

The rest of this paper is organized as follows. Basic definitions
of bipartite consensus and radial basis function neural networks
(RBFNNs) are given in Section 2. The distributed control algorithm
with NNs is developed for bipartite consensus in Section 3.
Implementations of bipartite consensus are conducted to
demonstrate the effectiveness of the developed algorithm in Sec-
tion 4. Conclusion is given in Section 5.

Notations: ð�ÞT denotes the transpose of a given matrix. ð�Þ is the
trace of a given matrix. J � J is the Frobenius norm or Euclidian
norm. � stands for the Kronecker product. λminð�Þ and λmaxð�Þ are
the smallest nonzero eigenvalue and the largest eigenvalue of a
given matrix, respectively. diagð�Þ represents a diagonal matrix.

2. Preliminaries

2.1. Signed graph and bipartite consensus

A triplet G¼ fV; E;Ag is called a signed graph if V ¼ f1;2;…;Ng
is the set of nodes, EDV � V is the set of edges, and A¼ ðAijÞA
RN�N is the adjacency matrix of G. Denote Aij as the element of the
ith row and jth column of the matrix A. The ith node in a signed
graph G represents the ith agent, and a directed path from node i
to node j is denoted as an ordered pair ði; jÞAE which means that
agent i can directly transfer its information to agent j and
Ajia03ði; jÞAE. The interaction between the ith and the jth
agent is cooperative if Aij40. It is competitive if Aijo0 and there
is no interaction if Aij ¼ 0. Note that self-loops will not be con-
sidered in this paper, i.e., Aii ¼ 0, i¼ 1;2;…;N. The Laplacian
matrix of the signed graph is given as follows:

Lij ¼

P
kAN i

jAikj if i¼ j;

�Aij if ia j:

8<
: ð1Þ

The following two definitions are important concepts in this
paper.

Definition 1 (Structurally balanced, cf. Altafini [36]). In this paper,
a signed graph GðAÞ is said to be structurally balanced if it contains
a bipartition of the sets of nodes V1 and V2, where V ¼ V1 [

V2;V1 \ V2 ¼∅ such that AijZ0; 8 i; jAVpðpAf1;2gÞ;Aijr0;
8 iAVp; jAVq; paqðp; qAf1;2gÞ. Otherwise, it is called structurally
unbalanced.

Definition 2 (Bipartite consensus). If for any initial conditions
xið0Þ, iAV, the distributed control algorithm will make the fol-
lowing conditions hold:

lim
t-1

‖xjðtÞ�xiðtÞ‖¼ 0; 8 i; jAV1 or 8 i; jAV2;

lim
t-1

‖xjðtÞþxiðtÞ‖¼ 0; 8 iAV1 and 8 jAV2;

8<
: ð2Þ

where V1 and V2 are the distinct sets defined in Definition 1. Then,
we say that the multi-agent systems reach bipartite consensus.

2.2. Radial basis function neural networks

In practice, we usually employ a neural network as the function
approximator to model an unknown function. RBFNN is a potential
candidate for approximating the unknown dynamics of the multi-
agent systems in virtue of “linear-in-weight” property. In Fig. 2, a
continuous unknown nonlinear function vector hðxÞ ¼ ½h1ðxÞ;h2ðxÞ;
…;hmðxÞ�T : Rm-Rm can be approximated by RBFNNs:

hðxÞ ¼WTΦðxÞ; ð3Þ

where x¼ ½x1; x2;…; xm�TARm is the input vector, WARp�m is the
weight matrix and p represents the number of neurons. ΦðxÞ ¼
½φ1ðxÞ;φ2ðxÞ;…;φpðxÞ�T is the activation function vector and

φiðxÞ ¼ exp
�ðx�μiÞTðx�μiÞ

δ2i

" #
; i¼ 1;2;…; p; ð4Þ

where μi ¼ ½μi1;μi2;…;μim�T is the center of receptive field and δi is
the width of Gaussian function. RBFNNs can approximate any
continuous function over a compact set with a given precision.
Therefore, for a given positive constant θN, there exists an ideal
weight matrix Wn such that

hðxÞ ¼WnTΦðxÞþθ; ð5Þ

where θARm is the approximating error with JθJoθN .
However, it is difficult to obtain Wn in real applications. Thus,

we denote Ŵ as the estimation of the ideal weight matrix Wn. The
estimation of h(x) can be written as

ĥðxÞ ¼ ŴTΦðxÞ; ð6Þ

where Ŵ can be updated online. The online updating law will be
given in Section 3.
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Fig. 1. Two clusters with cooperative behaviors inside and antagonistic behaviors
between each other.
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Fig. 2. Structure of the radial basis function neural networks.
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