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a b s t r a c t

In this paper, we investigate the cluster synchronization problem of complex networks via pinning
control. Nodes in the same cluster are governed by the same dynamical function, while the functions for
different clusters are different. For the coupling scheme, the effects of the coupling are assumed to be
only cooperative, i.e., the coupling matrix is a Metzler matrix with zero row sums, and the connections
between the same cluster can be few. For this type of coupling, the main difference of this paper with
previous works is that the cluster synchronization is realized by pinning control technique. A simple
pinning control strategy is proposed and some sufficient criteria to realize cluster synchronization with
both static and adaptive control strength are given. Finally, numerical simulations are presented to verify
our theoretical results.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the past years, the complex networks have become a hot
topic because of their extensive existence in nature and society,
such as immune systems, social networks, World Wide Web and
electrical power grids. Synchronization, as an interesting phenom-
enon of complex networks, has attracted many researchers to
investigate because of its potential applications in many fields,
such as neural networks [1], image processing [2], and secure
communication [3]. Researchers have investigated a lot of different
synchronization protocols, for example, complete synchronization,
cluster synchronization, phase synchronization, lag synchroniza-
tion, generalized synchronization, and so on.

If all the nodes of the network finally converge to the same
trajectory, the complete synchronization is called to be reached,
see [4–13]. If the nodes’ dynamical behavior is ignored further, the
synchronization problem turns into the consensus problem. So far,
many graph theories have been introduced to investigate the
complete synchronization phenomenon. For example, the master
stability function (MSF) method was set up to investigate the
stability of the synchronization state in [4]; while the left eigen-
vector corresponding to the zero eigenvalue of the coupling matrix
was used by the authors in [5–8] to investigate synchronization
problem; [10,11] studied the consensus problem with or without

time delay. Despite these protocols’ effectiveness in making the
networks achieve synchronization, complex networks cannot syn-
chronize to any given trajectory without external control. In
practice, it is difficult to add the controllers on every node of the
networks because of the network's scale is usually large. Therefore,
to solve the problem, the pinning control strategy is proposed,
which means the controllers are just added on partial nodes, see
[14–20]. For example, [14] proved rigorously that a complex net-
work can be pinned to synchronize by adding a single controller on
just one node.

On the other hand, the cluster synchronization is a more
practical phenomenon than the complete synchronization, which
is significant in communication engineering [21], biological
sciences [22], and so on. The cluster synchronization is character-
ized by that the nodes in the same cluster achieve a uniform state
while the nodes in different clusters have different states. That is to
say, the complete synchronization occurs in every cluster, while
there is no synchronization between different clusters. Specially, if
there is only one cluster in the network, the cluster synchroniza-
tion problem becomes the complete synchronization.

Investigations have shown that the cluster synchronization
depends heavily on the choice of coupling schemes. Generally
speaking, there are two main schemes to investigate the cluster
synchronization. For the first scheme, nodes in the same cluster
only have cooperative connections, while nodes in different clus-
ters can have cooperative or competitive connections, see [23–31].
For example, Ma, Liu and Zhang were the first to propose such a
new coupling scheme to realize cluster synchronization in [23]; the
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authors in [24] generalized the scheme to asymmetric matrices to
realize the cluster synchronization; [25] investigated the cluster
synchronization under pinning control with symmetric coupling
matrix; [26] generalized the coupling matrix to be asymmetric and
the pinning control can be periodically intermittent; [27] studied
the cluster synchronization under nonlinear coupling and periodi-
cally intermittent pinning control. All these works were based on
the construction of the coupling matrix, which played a key role in
the analysis of cluster synchronization problem.

The other scheme for the cluster synchronization is to assume
that all the coupling nodes only have cooperative connections, i.e.,
the coupling matrix is a Metzler matrix with zero row sums, where
a Metzler matrix is a matrix in which all the off-diagonal compo-
nents are nonnegative. For example, in [32,33], for a given nearest-
neighborhood network with zero-flux or periodic boundary con-
ditions, the authors proposed an effective method to determine
some possible states of cluster synchronization and their stability;
in [34], for linearly and symmetrically coupled networks, the
authors discussed the connection between the cluster synchroni-
zation and the complete synchronization by analyzing the invar-
iant synchronization manifold and proposed several criteria for the
global attractivity of the invariant synchronization manifold.
Recently, [35] studied the cluster synchronization in networks of
coupled nonidentical systems and indicated that the common
intercluster coupling condition and the intracluster communica-
tion played key roles for cluster synchronization. An interesting
phenomenon is reported, the network can realize cluster synchro-
nization even if there is no connections between nodes of the same
cluster. Refs. [36,37] studied the cluster synchronization and
cluster consensus for discrete-time coupled systems respectively,
and [38] investigated the cluster consensus problem for
continuous-time coupled systems. Ref. [39] showed how different
mechanisms may lead to clustering behavior in connected net-
works consisting of diffusively coupled agents by considering self-
dynamics, delays, both positive and negative couplings.

Until now, most existing works only discuss the cluster syn-
chronization by mutual coupling, however, in some cases, the final
synchronization trajectories should also be considered. That is to
say, if we want the nodes finally converge to some targets, the
external control should be added. Moreover, for constant coupling
strength, the cluster synchronization may not be realized, while by
adding external control, the cluster synchronization can be
achieved, see [40–42]. However, all these works realize the
synchronization by adding the controllers on all clusters, that is
to say, any cluster should be finally synchronized to these given
targets.

To our best knowledge, there are few works discussing the
cluster synchronization by adding the external controllers on just
partial clusters. Motivated by the above discussions, we will
investigate the cluster synchronization of complex networks via
pinning control. There are three contributions in this paper: (1) a
new network model for cluster synchronization is set up, only
partial clusters are controlled while others are not; (2) criteria are
obtained by using pinning control and synchronization techniques;
(3) a new adaptive scheme for coupling strength to realized cluster
synchronization is proposed and rigorously proved.

The rest of this paper is organized as follows. In Section 2, the
network model is described and some necessary definitions,
lemmas, assumptions and notations are given. In Section 3, we
investigate the cluster synchronization problem with pinning
control and some sufficient criteria are proposed to guarantee
the cluster synchronization. The adaptive technique is also applied
on the coupling strength and its effectiveness is rigorously proved
in Section 4. In Section 5, some numerical simulations are pre-
sented to show the validity of theoretical results. Finally, this paper
is concluded in Section 6.

2. Preliminaries

The graph G can be denoted by a double set V; Ef g, where V
represents the vertex set numbered by 1;…;Nf g, and E denotes the
edge set with eði; jÞAE if and only if there is an edge from vertex j to
i. Assume the set of nodes in the network can be divided into m
clusters, i.e., f1;…;Ng ¼ C1 [ C2 [ ⋯ [ Cm where

C1 ¼ f1;…; r1g; C2 ¼ fr1þ1;…; r2g;…; Cm ¼ frm�1þ1;…;Ng: ð1Þ
The network of coupled dynamical systems is defined on the

graph G. The individual uncoupled system on the vertex i is
denoted by an n-dimensional ordinary differential equation

_xiðtÞ ¼ f kðxiðtÞÞ;
for 8 iACk, where xi ¼ ½x1i ;…; xni �> is the state variable vector on
vertex i and f kð�Þ : Rn-Rn is a continuous vector-valued function.
Each vertex in the same cluster has the same individual node
dynamic. It should be emphasized that nodes in different clusters
are nonidentical, which can guarantee that the trajectories are
apparently distinguishing when cluster synchronization is reached.

The interaction among vertices is denoted by linear diffusion
terms. That is to say, the dynamical behaviors of the network can
be described by

_xiðtÞ ¼ f kðxiðtÞÞþc
XN
j ¼ 1

aijΓðxjðtÞ�xiðtÞÞ; iACk; k¼ 1;…;m ð2Þ

In [35], the cluster synchronization of the above model has been
investigated, but the synchronization heavily depends on the value
of the coupling strength c. So we will investigate the linearly
coupled systems by adding some external controllers in order to
realize the cluster synchronization with a small value of c.

Before our discussion, we first present some useful definitions,
notations and lemmas, which will be used throughout the
whole paper.

We make the following assumption for function f kð�Þ.

Assumption 1 (QUAD condition, Lu and Chen [5,6], Liu and Chen
[7,8]). The function f kð�Þ; k¼ 1;2;…;m, is said to satisfy the QUAD
condition, denoted as f kð�ÞAQUADðα;ηÞ. That is, if for some αAR,
there exists η40 such that

ðx�yÞ> ½f kðxÞ� f kðyÞ�αΓðx�yÞ�r�ηðx�yÞ> ðx�yÞ ð3Þ
holds for all x; yARn.

Definition 1 (Liu and Chen [26]). Matrix A¼ ½aij�Ni;j ¼ 1 of order N is
said to belong to class A1, denoted as AAA1, if

1. aijZ0; ia j, aii ¼ �PN
j ¼ 1;ja i aij, i¼ 1;…;N,

2. A is irreducible.

Furthermore, if AAA1 and aij ¼ aji; ia j, then we say AAA2.

Lemma 1 (Lu et al. [35]). If a matrix AN�NAA2, its eigenvalues are
all real and can be sorted as

0¼ λ1ðAÞ4λ2ðAÞZλ3ðAÞZ⋯ZλNðAÞ: ð4Þ

Definition 2 (Wu and Chen [34]). Matrix A¼ ½aij�ARN1�N2 is said to
belong to class A3, denoted as AAA3, if its each row-sum is equal, i.
e.,
PN2

j ¼ 1 ai1 j ¼
PN2

j ¼ 1 ai2j, i1; i2 ¼ 1;…;N1.

Now, using the above definitions of matrices, we can define a
new type of coupling matrix A for the following cluster synchro-
nization analysis.

Definition 3 (Wu and Chen [34]). Suppose AARN�N , the indexes
f1;…;Ng can be divided into m clusters as defined in (1), and the
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