
Approximate k-NN delta test minimization method using genetic algorithms:
Application to time series

Fernando Mateo a,�, Dušan Sovilj b, Rafael Gadea a

a Institute of Applications of Information Technologies and Advanced Communications, Universidad Politécnica de Valencia, Valencia, Spain
b Laboratory of Information and Computer Science, Helsinki University of Technology, Espoo, Finland

a r t i c l e i n f o

Available online 7 March 2010

Keywords:

Genetic algorithm

Delta test

Variable selection

Approximate k-nearest neighbors

Variable scaling

Variable projection

Time series

a b s t r a c t

In many real world problems, the existence of irrelevant input variables (features) hinders the

predictive quality of the models used to estimate the output variables. In particular, time series

prediction often involves building large regressors of artificial variables that can contain irrelevant or

misleading information. Many techniques have arisen to confront the problem of accurate variable

selection, including both local and global search strategies. This paper presents a method based on

genetic algorithms that intends to find a global optimum set of input variables that minimize the Delta

Test criterion. The execution speed has been enhanced by substituting the exact nearest neighbor

computation by its approximate version. The problems of scaling and projection of variables have been

addressed. The developed method works in conjunction with MATLAB’s Genetic Algorithm and Direct

Search Toolbox. The goodness of the proposed methodology has been evaluated on several popular time

series examples, and also generalized to other non-time-series datasets.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

In many fields like science, industry and finance it is necessary
to accurately predict future values of a time series. Some
examples of problems that would benefit from an accurate
prediction are: industrial processes, that can be modeled,
predicted and controlled based on sensory data; natural phenom-
ena, such as daily rainfall or seismic events; medical applications
like the modeling of biological signals such as EEG or ECG; and
financial problems like the prediction of stock market prices.

The correct estimation of future values of time series is usually
affected by complex processes like random fluctuations, sudden
trend changes, volatility and noise. The horizon of prediction and
the number of available samples to obtain one or more future
estimations are important issues too. When building a regressor,
which can be understood as the number of past events used to
predict their next one, the number of inputs to the model (which
is translated as the size of the regressor) can become very large,
depending on the periodicity of the particular time series. With
large regressors, the learning procedure of the involved predictive
models becomes slow and tedious.

Historically, the different models employed to estimate
time series have been differentiated in two groups: linear and

nonlinear methods. The most popular linear methods are based
on the Box–Jenkins methodology [1]. They include autoregressive
(AR) models, integrated (I) models, and moving average (MA)
models. Their combination has given rise to autoregressive
moving average (ARMA) models, autoregressive integrated mov-
ing average (ARIMA) models and their seasonal generalization
(SARIMA) [2]. However, these models are too limited and
simplistic for the average complexity of a time series. In contrast,
nonlinear methods are more suitable for complex series that
contain irregularities and noise, such as chaotic time series. There
is abundant literature on nonlinear models for time series fore-
casting [3–8]. Among the existing methods are neural networks
[9–15], radial basis function networks [11,16–18], support vector
machines [19–22], self organizing maps [23,24] and other variants
of these models [11,25–28]. However, building these models takes
considerable computational time compared to linear models.
Recently, several hybrid methods (ARIMA+fuzzy or neural net-
works) have been employed in the literature [29–31].

Both linear, nonlinear, and hybrid methods have the same
purpose: to gather enough information from past samples to give
a reliable prediction of the immediate future samples (short-term
prediction) or give estimations about far-future samples (long-
term prediction). Long term prediction (i.e. predicting multiple
steps ahead towards the future) is usually more challenging
because the accumulation of errors and inherent uncertainties of
a multiple-step-ahead in time yields deteriorated estimates of
future samples.

Time series prediction can be considered a modeling problem
[32]. The inputs to the model are composed of a set of consecutive

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2010 Elsevier B.V. All rights reserved.

doi:10.1016/j.neucom.2009.11.032

� Corresponding author. Present address: European Organization for Nuclear

Research (CERN), Geneva, Switzerland.

E-mail addresses: fermaji@upvnet.upv.es, fernando.mateo.jimenez@cern.ch

(F. Mateo), dusans@cis.hut.fi (D. Sovilj), rgadea@eln.upv.es (R. Gadea).

Neurocomputing 73 (2010) 2017–2029

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2009.11.032
mailto:fermaji@upvnet.upv.es
mailto:dusans@cis.hut.fi
mailto:dusans@cis.hut.fi
mailto:dusans@cis.hut.fi
mailto:rgadea@eln.upv.es


ARTICLE IN PRESS

regressor instances, while the output is the next value or values of
the series that have to be predicted after each regressor instance.

Normally, the size of the regressor is chosen according to the
periodicity components of the time series. Consequently, time
series with long periodic components may yield very large
regressors that can be troublesome to handle by predictive
models. Most modeling techniques do not deal well with datasets
having a high number of input variables, due to the so called curse

of dimensionality [33]. As the number of dimensions grows, the
number of input values required to sample the solution space
increases exponentially. Many real life problems present this
drawback since they have a considerable amount of variables to
be selected in comparison to the small number of observations.
Therefore, efficient variable selection procedures are required to
reduce the complexity while also improving the interpretability
[34] of multidimensional problems.

Recently, it has been shown that delta test (DT) can be a
powerful tool to determine the quality of a subset of variables by
estimating the variance of the noise at the output [35]. Several
studies related to feature selection using the DT have been
developed using both local search strategies such as forward
search (FS) [36] and forward-backward selection (FBS) [37,38] and
also global search techniques like tabu search [37,39] and genetic
algorithm (GA) [37]. Global search methods have the advantage of
being able to escape from local minima, to which local methods
are prone to converge [40].

This paper presents a global search technique based on GAs
that manages not only to select, but also scale and project the
input variables in order to minimize the DT criterion. The compu-
tation of the DT has been accelerated by using the approximate
k-nearest neighbor approach [41]. The designed method makes
use of MATLAB’s Genetic Algorithm and Direct Search toolbox for
the GA-based search. This methodology can be generalized to all
regression problems. In this study we are going to focus mainly on
time series processing, but we have also included non-time series
datasets to show that the methodology can be generalized to all
regression problems regardless of their nature. The predictive
study of the time series is not going to be addressed, as the
methodology only provides reduced datasets for their later
modeling.

This paper is organized as follows: Section 2 explains the DT
criterion and its role in the present study. Section 3 presents the
approximate k-nearest neighbors algorithm that has been used to
speed up the DT calculation. Section 4 introduces the motivation
for the GA and the fitness function optimization methods, such as
scaling, projection and their variations with a fixed number of
variables. Section 5 describes the datasets tested, preprocessing
and hardware/software specifications for the performed
experiments, and finally, Section 6 discusses the most relevant
results obtained.

2. Delta test

Delta Test was introduced by Pi and Peterson for time series
[42] and recently further analyzed by Liitiäinen et al. [43].
However, its applicability to variable selection was proposed in
[35]. The DT is a nonparametric noise estimator, i.e. it aims to
estimate the variance of the noise at the output, or the mean
squared error (MSE) that can be achieved without overfitting.
Given N input–output pairs ð~xi,yiÞARd

�R, the relationship
between ~xi and yi can be expressed as

yi ¼ f ð~xiÞþZi, i¼ 1, . . . ,N, ð1Þ

where f is the unknown function and Z is the noise. The DT
estimates the variance of the noise Z.

The DT is useful for evaluating the nonlinear correlation
between input and output variables. According to the DT, the
selected set of input variables is the one that represents the
relationship between the input variables and the output variable
in the most deterministic way.

The DT is based on the hypothesis of continuity of the regres-
sion function. If two points ~x1 and ~x2 are close in the input vari-
able space, the continuity of regression function implies that the
outputs f ð~x1Þ and f ð~x2Þ will be close enough in the output space.
If this is not accomplished, it is due to the influence of the noise.

The DT can be interpreted as a particularization of the Gamma
Test [44] considering only the first nearest neighbor. This yields a
fully nonparametric method as it removes the only hyperpara-
meter (number of neighbors) that had to be chosen for the
Gamma Test. Let us denote the nearest neighbor of a point ~xiARd

as ~xNNðiÞ. The nearest neighbor formulation of the DT estimates
Var½Z� by

Var½Z� � d¼
1

2N

XN

i ¼ 1

ðyi�yNNðiÞÞ
2, ð2Þ

where yNN(i) is determined from the input–output pair
ð~xNNðiÞ,yNNðiÞÞ. For a proof of convergence the reader should refer
to [44].

3. Approximate k-nearest neighbors

Nearest neighbor search is an optimization technique for
finding closest points in metric spaces. Specifically, given a set of n

reference points R and query point q, both in the same metric
space V, we are interested in finding the closest or nearest point
cAR to q. Usually, V is a d-dimensional space Rd, where distances
are measured using Minkowski metrics (e.g. Euclidean distance,
Manhattan distance, max distance).

The simplest solution to this neighbor search problem is to
compute the distance from the query point to every other point in
the reference set, while registering and updating the position of
the nearest or k-nearest neighbors of every point. This algorithm,
sometimes referred to as the naive approach or brute-force
approach, works for small datasets, but quickly becomes intract-
able as either the size or the dimensionality of the problem
becomes large, because the running time is O(dn). In practice,
computing exact nearest neighbors in dimensions much higher
than 8 seems to be a very difficult task [41].

Few methods allow to find the nearest neighbor in less time
than the brute-force computation of all distances does. In 1977,
Friedman et al. [45] showed that O(n) space and O(log n) query
time are achievable through the use of kd-trees. However, even
these methods suffer as dimension increases. The constant factors
hidden in the asymptotic running time grow at least as fast as 2d

(depending on the metric).
In some applications it may be acceptable to retrieve a ‘‘good

guess’’ of the nearest neighbor. In those cases one may use an
algorithm which does not guarantee to return the actual nearest
neighbor in every case, in return for improved speed or memory
saving. Such an algorithm will find the nearest neighbor in the
majority of cases, but this depends strongly on the dataset being
queried. It has been shown [41] that by computing nearest
neighbors approximately, it is possible to achieve significantly
faster running times (on the order of tens to hundreds) often with
relatively small actual errors.

The authors [41] state that given any positive real e, a data
point p is a ð1þeÞ�approximate nearest neighbor of q if its
distance from q is within a factor of ð1þeÞ of the distance to the
true nearest neighbor. It is possible to preprocess a set of n points

F. Mateo et al. / Neurocomputing 73 (2010) 2017–20292018



Download English Version:

https://daneshyari.com/en/article/412820

Download Persian Version:

https://daneshyari.com/article/412820

Daneshyari.com

https://daneshyari.com/en/article/412820
https://daneshyari.com/article/412820
https://daneshyari.com

