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The computation of determinants or their signs is the core procedure in many important 
geometric algorithms, such as convex hull, volume and point location. As the dimension 
of the computation space grows, a higher percentage of the total computation time is 
consumed by these computations. In this paper we study the sequences of determinants 
that appear in geometric algorithms. The computation of a single determinant is accelerated 
by using the information from the previous computations in that sequence.
We propose two dynamic determinant algorithms with quadratic arithmetic complexity 
when employed in convex hull and volume computations, and with linear arithmetic 
complexity when used in point location problems. We implement the proposed algorithms 
and perform an extensive experimental analysis. On one hand, our analysis serves as 
a performance study of state-of-the-art determinant algorithms and implementations. 
On the other hand, we demonstrate the supremacy of our methods over state-of-the-
art implementations of determinant and geometric algorithms. Our experimental results 
include a 20 and 78 times speed-up in volume and point location computations in 
dimension 6 and 11 respectively.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Computing the sign of a determinant, or in other words evaluating a determinant predicate, is in the core of many 
important geometric algorithms. For example, convex hull algorithms use orientation predicates, and Delaunay triangulation 
algorithms involve in-sphere predicates. Furthermore, the computation of the value of a determinant, or in other words a 
determinant construction, is also important in some geometric algorithms. For example, the exact volume computation of 
a convex polytope using either triangulation or sign decomposition method relies on the computation of the volume of 
simplices, which reduces to computing the value of a determinant.

In other words predicates encapsulate decisions in contrast to constructions that involve computation of new numerical 
values. In general dimension d, the orientation predicate of d +1 points is the sign of the determinant of a matrix containing 
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the homogeneous coordinates of the points as columns. On the other hand, the volume of a simplex is the value of the 
determinant of a matrix containing the homogeneous coordinates of the d + 1 vertices of the simplex. In practice, as the 
dimension grows, a higher percentage of the computation time is consumed by these core procedures.

In this paper, we study effective algorithms and implementations for the computation of the determinant predicates and 
constructions that appear in geometric computations. The model we follow is the exact computation paradigm presented 
in [1] and advocated by the Computation Geometry Algorithms Library (CGAL) [2], a state-of-the-art library for geometric 
computations. Note that in geometric algorithms the naive use of floating point arithmetic may lead to incorrect results [3]. 
There are two main scenarios regarding exactness. The first provides exact predicates but not necessarily exact constructions 
while the second provides both exact predicates and exact constructions. In this paper we study the second scenario. We 
give a particular emphasis on exact division and division-free algorithms. Avoiding divisions is crucial when working on a 
ring that is not a field, e.g., integers or polynomials.

The main idea of our approach is to study the sequence of computations of determinants or signs of determinants that 
appear in geometric algorithms. A single computation can be accelerated by using the information from the previous com-
putations in this sequence. The essential case is the sequence of computations of the orientation predicates that appear 
in convex hull algorithms. The convex hull problem is probably the most fundamental problem in discrete and computa-
tional geometry. In fact, the problems of regular, Delaunay triangulations and Voronoi diagrams reduce to it by computing a 
convex hull in one dimension higher [4]. Additionally, in the course of an incremental convex hull algorithm like Beneath-
and-Beyond [5] we compute the volume of the polytope as a by-product of the computation. See [6] for a survey on volume 
computation and relevant implementations.

Since we will study in practice the performance of geometric and algebraic algorithms, it is important to classify the test 
cases. Especially, one of the parameters we will use is the dimension. We will refer throughout the paper to dimensions d <
5 as low, to dimensions 5 ≤ d ≤ 25 as medium and to dimensions d > 25 as high, unless otherwise stated. In our experiments, 
we focus on medium dimensions for determinant computations and “small to medium” for geometric algorithms, i.e., 6 to 
11 depending on the application.

1.1. Previous work

There is a variety of algorithms and implementations for computing the determinant of a d × d matrix. Let us denote 
by O (dω) the complexity of matrix multiplication. First, we consider the case where the matrix has values from a field. For 
ω > 2, an algorithm for matrix multiplication imply an algorithm for determinant computation with the same ω [7]. The 
best current ω is 2.3728639 [8].

An important class of determinant computation algorithms are the algorithms which use exact divisions, i.e., divisions 
known to have remainder zero. An application of them is the computation of the determinant of a matrix with integer 
entries using only integer arithmetic. A typical example of this is Bareiss algorithm [9].

Division-free algorithms form another category. They use no divisions at all, e.g., when matrix coefficients are elements 
of an abstract commutative ring. The best current ω in this category is 2.697263 [10]. Here, it is worth mentioning a family 
of determinant algorithms that use combinatorial approaches. They were introduced by Mahajan and Vinay [11], and are 
based on clow (closed ordered walk) sequences. Several similar methods with complexity O (d4) are surveyed by Rote [12]. 
Based on the idea of clow sequences Bird introduced a simpler algorithm that uses matrix operations [13]. Its complexity 
is O (dM(d)), where M(d) is the complexity of matrix multiplication. Urbańska conceived a method that uses fast matrix 
multiplication [14] to obtain a complexity O (d3.03) [15]. However, in practice when d is small, Bird’s algorithm behaves 
better than other division-free algorithms, as it will be discussed in Section 4.3.

Determinants of matrices over a ring arise in combinatorial problems [16], in algorithms for lattice polyhedra [17] and 
secondary polytopes [18] or in computational algebraic geometry problems [19]. A special case of the latter is the compu-
tation of resultant polytopes that have applications in polynomial system solving [20] and geometric modeling [21].

Good asymptotic complexity does not imply good behavior in practice for low and medium dimensions. For instance,
LinBox [22], which implements algorithms with state-of-the-art asymptotic complexity, introduces a significant overhead 
in low and medium dimensions, and seems most suitable in high dimensions (see Section 4.3 for more details).

Eigen [23] implements LU decomposition, of complexity O (d3), and seems to be suitable for low and medium dimen-
sions. Eigen was designed with floating-point computations in mind, where it uses hardware floating-point vectors to 
attain great speed.

In addition, there exists a variety of algorithms for determinant sign computation [24–28]. Kaltofen and Villard [29]
present a complete survey on the matter. One tool commonly used for sign computations is filtering: arithmetic operations 
are done using fixed-precision floating-point interval arithmetic, switching to exact arithmetic only when the sign is un-
known. Filtered computations are widely used because they provide a simple approach to avoid performing exact operations 
in many cases. While filtered computation performs well in low dimensions, there is no experimental study on the efficiency 
of current methods in medium dimensions (see Section 4.6).

The problem of computing sequences of determinants has also been studied. TOPCOM [18] is the reference software for 
enumerating all regular triangulations of a set of points in general dimension. It efficiently pre-computes all orientation 
determinants that will be needed in the computation and stores their signs. Emiris et al. [30] study a similar problem in the 
context of computational algebraic geometry. In particular, the computation of several regular triangulations for different 
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