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Given four congruent balls A, B, C, D in R
δ that have disjoint interior and admit a line 

that intersects them in the order ABCD, we show that the distance between the centers 
of consecutive balls is smaller than the distance between the centers of A and D . This 
allows us to give a new short proof that n interior-disjoint congruent balls admit at most 
three geometric permutations, two if n � 7. We also make a conjecture that would imply 
that n � 4 such balls admit at most two geometric permutations, and show that if the 
conjecture is false, then there is a counter-example that is algebraically highly degenerate.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A line transversal to a family F of pairwise disjoint convex sets in R
δ is a line that intersects every element of that family. 

The study of line transversals, their properties, and conditions for their existence started in the 1950s with the classic work 
of Grünbaum, Hadwiger, and Danzer; background about the sizable literature on geometric transversal theory can be found 
in the classic survey of Danzer et al. [1], or the more recent ones by Goodman et al. [2], Eckhoff [3], Wenger [4], or 
Holmsen [5].

An oriented line transversal � to a family F induces a linear order on F: Fig. 1(a) shows three oriented transversals to 
a family of three congruent disks inducing the orders A ≺ C ≺ B , A ≺ B ≺ C , and B ≺ A ≺ C . For conciseness, we usually 
represent the order by the string listing the elements, the three lines in Fig. 1(a) induce the orders ACB, ABC, and BAC. 
Natural questions in geometric transversal theory are: Given a family of disjoint convex objects, how many different orders 
can be realized by line transversals? How much can these orders differ? What becomes of these questions if the objects 
have a more restricted shape, for instance if they are balls or axis-aligned boxes?

If an order can be realized by an oriented line, so can its reverse and the two orders are therefore equivalent as far 
as line transversals are concerned. The equivalence classes, that is, pairs of an order and its reverse, are called geometric 
permutations. Fig. 1(b) shows a set of five congruent disks with the two geometric permutations ABCDE and ACBDE, which 
could equally well be written as EDCBA and EDBCA. In Fig. 1(b) the disks B and C touch each other. We allow this, but a line 
transversal is not allowed to be tangent to these disks in this common point. Put differently, we can remove the common points of 
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Fig. 1. Orders and geometric permutations.

contact from the objects to obtain a family of disjoint convex objects with the same set of line transversals. It is convenient 
to allow such families, as configurations are often easier to describe when objects touch. We will call a family of compact 
convex objects in R

δ that may touch, but whose interior is disjoint, a non-overlapping family.
The study of geometric permutations started in the 1980s with the work by Katchalski et al. [6,7]. In the plane, n convex 

objects admit at most 2n −2 geometric permutations and this bound is tight [8]. One of the intriguing open questions is the 
corresponding bound for three and higher dimensions: n convex objects in R

δ can have �(nδ−1) geometric permutations [9], 
but the best known upper bound is only O (n2δ−3 logn) [10]. For balls or similar fat objects, the lower bound of �(nδ−1) is 
known to be tight [9,11]. Disjoint congruent balls, however, have only a constant number of geometric permutations: In two 
dimensions, n � 4 congruent disks have at most two geometric permutations [9,12]. In dimension δ � 3, Cheong et al. [13]
proved that n non-overlapping congruent balls have at most three geometric permutations, and at most two geometric 
permutations when n � 9.

In this paper we revisit the problem of bounding the number of geometric permutations of n non-overlapping congruent 
balls in R

δ . Since we can arbitrarily choose the radius of the balls, we will refer to them as unit balls. The earlier work of 
Cheong et al. [13] does not entirely settle the question, as no construction of n > 3 non-overlapping unit balls is known 
that admits more than two geometric permutations. Furthermore, the proof by Cheong et al. is quite technical and relies on 
delicate geometric lemmas and tedious case analysis.

In the first part of this paper, we give a shorter and greatly simplified proof that n � 3 non-overlapping unit balls have at 
most three geometric permutations. Unlike the previous proof [13], it could be presented in its entirety in an undergraduate 
course on transversal theory. Our main theorem is the following:

Theorem 1. Let F be a family of n non-overlapping unit balls in Rδ . The number of geometric permutations of F is at most three if 
n � 6, and at most two if n � 7.

Theorem 1 slightly improves the previous bound of Cheong et al. [13] by giving a tight bound for n = 7 and 8 (so that 
only for 4 � n � 6 it remains open whether the number of geometric permutations is two or three). Our proof relies on the 
following lemma:

Distance Lemma. If four non-overlapping unit balls A, B, C and D in Rδ have a line transversal with the order ABCD then |ad| >
max{|ab|, |bc|, |cd|}.

(Here and throughout the paper we will use lower-case letters to denote the centers of balls written with upper-case 
letters, so a, b, c, and d are the centers of A, B , C , and D .) The lemma is not as obvious as it might appear and is false for 
three balls: Fig. 1(a) shows that |ac| < |ab| is possible for three unit balls with a transversal with the order ABC.

We prove the Distance Lemma, in Section 3, by first modifying the given configuration into a canonical situation: We 
shrink the balls, keeping them congruent, until we reach the smallest radius for which they still have a transversal with 
the given order. This idea has probably been used first by Klee [14] and then by Hadwiger [15]. The resulting canonical 
configuration F has the property that the line transversal � is pinned (Lemma 7): This means that any arbitrarily small 
perturbation of � is no longer a transversal of F. In other words, � is an isolated point in the space of transversals of F. 
The same method for deforming a family of unit balls such that the line transversal becomes pinned has been used by 
Cheong et al. [16]. The correctness of the method is there deduced from algebraic results by Megyesi and Sottile [17] and 
by Borcea et al. [18]. This argument requires strict disjointness of the balls, and doesn’t meet our goal of a proof presentable 
to undergraduates. We instead observe that the fact we need is already implicit in a proof by Holmsen et al. [19]. In 
Appendix A we examine their proof to prove the correctness of the pinning method for non-overlapping unit balls.

Before proving the Distance Lemma, we show, in Section 2, that it readily simplifies various steps of the proof of Cheong 
et al. [13], resulting in an elementary proof that the number of geometric permutations of n non-overlapping unit balls is at 
most three. On the one hand, the Distance Lemma simplifies technical derivations. For example, the fact that the geometric 
permutations ABCD and BADC are incompatible for non-overlapping unit balls, that is, they cannot be realized at the same 
time by a family of four balls, was given a delicate, five pages long, proof [13, Section 4]; it follows immediately from 
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