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A standard way to approximate the distance between two vertices p and q in a graph 
is to compute a shortest path from p to q that goes through one of k sources, which 
are well-chosen vertices. Precomputing the distance between each of the k sources to all 
vertices yields an efficient computation of approximate distances between any two vertices. 
One standard method for choosing k sources is the so-called Farthest Point Sampling (FPS), 
which starts with a random vertex as the first source, and iteratively selects the farthest 
vertex from the already selected sources.
In this paper, we analyze the stretch factor FFPS of approximate geodesics computed using 
FPS, which is the maximum, over all pairs of distinct vertices, of their approximated 
distance over their geodesic distance in the graph. We show that FFPS can be bounded in 
terms of the minimal value F∗ of the stretch factor obtained using an optimal placement 
of k sources as FFPS � 2r2

eF∗ + 2r2
e + 8re + 1, where re is the length ratio of longest edge 

over the shortest edge in the graph. We further show that the factor re is not an artefact 
of the analysis by providing a class of graphs for which FFPS � 1

2 reF∗.
© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the context of shape analysis, it is commonly required to compute and analyze geodesics between many pairs of 
vertices on a shape that is represented by a connected undirected graph G with n vertices and m edges. To compute 
shortest-path queries from a single-source on G , Dijkstra’s algorithm [4] takes O (n log n + m) time. To compute all-pairs 
shortest-paths, we can run Dijkstra’s algorithm starting from each of the n vertices and, while there are more efficient 
methods, this problem has a trivial �(n2) lower bound.

To reduce this complexity, the problem of efficiently approximating the distance between any two vertices is often con-
sidered. A very recent method efficiently computes a (1 + ε)-approximation to a single such query in a planar graph in 
O ((log log n)3/ε2 + log log

√
log log((log log n)/ε2)/ε2) time and O (n((log log n)2/ε + (log log n)/ε2))) space [17].

In contrast to this work that builds a carefully chosen data structure, we are interested in a class of simple algorithms, 
commonly used in practice, that compute in a pre-processing phase a set S = {s1, . . . , sk} of k vertices, called sources, in G
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and runs Dijkstra’s algorithm from each of them in O (k (n log n +m)) total time. Then, the distance between any two vertices 
p and q is approximated as the minimum, over all k sources, of the distance from p to q through one of the sources. The 
quality of the worst approximation is characterized by the stretch factor, defined as the maximum, over all pairs of distinct 
vertices, of their approximated distance over their geodesic distance in the graph, that is

F = max
(p,q)∈V , p �=q

min
si∈S

d(p, si) + d(si,q)

d(p,q)
,

where V denotes the set of vertices of G and where the function d(., .) measures the shortest geodesic distance between 
two vertices. Throughout this paper, we use for simplicity the notation maxp,q for max(p,q)∈V , p �=q .

A natural problem is thus to compute an optimal placement of k sources that yields a minimum stretch factor, de-
noted F∗ . We refer to this problem as the k-center path-dilation problem. This problem is NP-complete even for planar 
graphs because the existence of at most k sources so that the stretch factor is 1 is trivially equivalent to the existence of 
a vertex cover of size at most k, which is NP-complete even for planar graphs [7].1 Furthermore, we show in [10] that the 
k-center path-dilation problem is also NP-complete in the case of planar triangle graphs (i.e., connected graphs whose faces 
have three edges and whose edges are incident to at most two faces), which are of particular interest for shape analysis.

For computing a set of at most k sources, Könemann et al. [12, Thm. 3] present a simple algorithm that yields a stretch 
factor FK � 2F∗ + 1 + ε in time O (k (n log n + m) log(n re/ε)) for any ε > 0, where re is the lengths ratio of the longest 
over the shortest edges in G . For convenience of the reader, we detail in Section 2 their algorithm and proof because they 
missed the ε term and did not state the complexity.

In this work, we analyze the stretch factor of the even simpler and commonly used Farthest Point Sampling (FPS) heuristic 
for selecting a set of k sources [9,14]. FPS starts by selecting a random vertex and iteratively selects a vertex that has the 
largest geodesic distance to its closest already selected source, until k sources are picked. Running Dijkstra’s algorithm from 
each of the sources directly yields a total running in O (k (n log n + m)).

To the best of our knowledge, no theoretical results are known on the quality of the stretch factor, FFPS , obtained by 
an FPS of k sources, compared to the minimal stretch factor F∗ . In this paper, we prove that for any connected undirected 
graph and any choice of k sources obtained by the FPS algorithm,

FFPS � 2r2
e (F∗ + 1) + 8re + 1,

where re is the lengths ratio of the longest over the shortest edges in G (Theorem 1). We further show that the factor re
is not an artefact of the analysis by providing a family of graphs for which FFPS � 1

2 reF∗ (Theorem 6). This shows that if 
the ratio re is large, FFPS can be much larger than the optimal stretch factor F∗ but, on the other hand, F∗ is likely to be 
large as well. Indeed, consider a graph with k + 1 arbitrarily small edges such that all their adjacent edges are long enough: 
at least one of these edges is not incident to a source and for the endpoints of this edge, their approximated distance over 
their geodesic distance is arbitrarily large. Note that all our bounds also hold in the case where the edge lengths ratio re is 
defined only by pairs of edges that belong to one and the same shortest path in G .

The relevance of our bounds on FFPS is to give some theoretical insight on why FPS has been used successfully in 
heuristics for shape processing. However, it should be stressed that the edge lengths ratio re appears in the upper and 
lower bounds on FFPS but not on FK. Still, re appears in the running time for the latter and not for the former, but since it 
appears in logarithmic form, it is fair to expect that Könemann et al.’s algorithm would give better results in terms of the 
combination of stretch factors and running times than the widely used FPS algorithm. Nevertheless, we are not aware of 
any experimental study on the subject.

After discussing related work in Section 2, we prove our main results, Theorems 1 and 6 in Sections 3.1 and 3.2 respec-
tively.

2. Related work

Computing geodesics on polyhedral surfaces is a well-studied problem for which we refer to the recent survey by Bose 
et al. [2]. While much work on surface processing compute geodesics that are allowed to pass through the interior of faces, 
much work also restrict geodesics to go through vertices and edges, as they are easy to compute. In this paper, we restrict 
geodesics to be shortest paths along edges of the underlying graph.

The FPS algorithm has been used for a variety of surface processing tasks. The algorithm was first introduced for graph 
clustering [9], and later independently developed for 2D images [6] and extended to 3D meshes [14]. This sampling strategy 
has been used to efficiently compute approximate geodesic distances [1,8], to recognize the class of an input shape [5,13], 
and to compute point-to-point correspondences between surfaces [3,16,15]. In practice, FFPS and re are typically reasonably 
small. For instance, for the Greek head model consisting of 6607 vertices used by Ruggeri and Saupe [15], it is re = 15.4 and 
FFPS = 18.8 for k = 500. In our implementation, we computed FFPS by averaging over five sets of randomly chosen sources 
computed using FPS.

1 A NP-hardness proof for general graphs can also be found in [11, §2] but, as it comes as a corollary of another NP-hardness reduction, it is less trivial 
and it inherently uses non-planar graphs.
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