The non-pure version of the simplex and the boundary of the simplex

Nicolás A. Capitelli
Departamento de Matemática-IMAS, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina

ARTICLE INFO

Article history:

Received 14 July 2015
Accepted 4 May 2016
Available online 10 May 2016

Keywords:

Simplicial complexes
Combinatorial manifolds
Alexander dual

Abstract

We introduce the non-pure versions of simplicial balls and spheres with minimum number of vertices. These are a special type of non-homogeneous balls and spheres (NH -balls and NH -spheres) satisfying a minimality condition on the number of facets. The main result is that minimal NH -balls and NH -spheres are precisely the simplicial complexes whose iterated Alexander duals converge respectively to a simplex or the boundary of a simplex.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A simplicial complex K of dimension d is vertex-minimal if it is a d-simplex or it has $d+2$ vertices. It is not hard to see that a vertex-minimal homogeneous (or pure) complex of dimension d is either an elementary starring (τ, a) Δ^{d} of a d-simplex or the boundary $\partial \Delta^{d+1}$ of a ($d+1$)-simplex. On the other hand, a general non-pure complex with minimum number of vertices has no precise characterization. However, since vertex-minimal pure complexes are either balls or spheres, it is natural to ask whether there is a non-pure analogue to these polyhedra within the theory of non-homogeneous balls and spheres. In [5] G. Minian and the author introduced $N H$-manifolds, a generalization of the concept of manifold to the nonpure setting (somewhat similar to Björner and Wachs's extension of the shellability definition to non-pure complexes [3]). In this theory, NH -balls and NH -spheres are the non-pure versions of combinatorial balls and spheres.

The purpose of this article is to study minimal NH -balls and NH -spheres, which are respectively the non-pure counterpart of vertex-minimal balls and spheres. Note that $\partial \Delta^{d+1}$ is not only the d-sphere with minimum number of vertices but also the one with minimum number of facets. For non-pure spheres, this last property is strictly stronger than vertexminimality and it is convenient to define minimal $N H$-spheres as the ones with minimum number of facets. With this definition, minimal NH -spheres with the homotopy type of a k-sphere are precisely the non-pure spheres whose nerve is $\partial \Delta^{k+1}$, a property that also characterizes the boundary of simplices. On the other hand, an $N H$-ball B is minimal if it is part of a decomposition of a minimal $N H$-sphere, i.e. if there exists a combinatorial ball L with $B \cap L=\partial L$ such that $B+L$ is a minimal NH -sphere. This definition is consistent with the notion of vertex-minimal simplicial ball (see Lemma 4.1 below).

Surprisingly, minimal NH -balls and NH -spheres can be characterized by a property involving Alexander duals. Denote by K^{*} the Alexander dual of a complex K relative to the vertices of K. Set inductively $K^{*(0)}=K$ and $K^{*(m)}=\left(K^{*(m-1)}\right)^{*}$. Thus, in each step $K^{*(i)}$ is computed relatively to its own vertices, i.e. as a subcomplex of the boundary of the simplex of minimum dimension containing it. We call $\left(K^{*(m)}\right)_{m \in \mathbb{N}_{0}}$ the sequence of iterated Alexander duals of K. The main result of the article is the following.

[^0]Theorem 1.1. Let K be a finite simplicial complex.
(i) There is an $m \in \mathbb{N}_{0}$ such that $K^{*(m)}$ is the boundary of a simplex if and only if K is a minimal $N H$-sphere.
(ii) There is an $m \in \mathbb{N}_{0}$ such that $K^{*(m)}$ is a simplex if and only if K is a minimal $N H$-ball.

In any case, the number of iterations needed to reach the simplex or the boundary of the simplex is bounded above by the number of vertices of K.

Note that $K^{*}=\Delta^{d}$ if and only if K is a vertex-minimal d-ball which is not a simplex, so (ii) describes precisely all complexes converging to vertex-minimal balls. Theorem 1.1 characterizes the classes of Δ^{d} and $\partial \Delta^{d}$ in the equivalence relation generated by $K \sim K^{*}$.

2. Preliminaries

2.1. Notation and definitions

All simplicial complexes that we deal with are assumed to be finite. Given a set of vertices $V,|V|$ will denote its cardinality and $\Delta(V)$ the simplex spanned by its vertices. $\Delta^{d}:=\Delta(\{0, \ldots, d\})$ will denote a generic d-simplex and $\partial \Delta^{d}$ its boundary. The set of vertices of a complex K will be denoted V_{K} and we set $\Delta_{K}:=\Delta\left(V_{K}\right)$. A facet of a complex K is a simplex which is not a proper face of any other simplex of K. We denote by $f(K)$ the number of facets in K. A ridge is a maximal proper face of a facet. A complex is pure or homogeneous if all its facets have the same dimension.

We denote by $\sigma * \tau$ the join of the faces $\sigma, \tau \in K$ (if $\sigma \cap \tau=\emptyset$) and by $K * L$ the join of the complexes K and L (if $V_{K} \cap V_{L}=\emptyset$). By convention, if \emptyset is the empty simplex and $\{\emptyset\}$ the complex containing only the empty simplex then $K *\{\emptyset\}=K$ and $K * \emptyset=\emptyset$. Note that $\partial \Delta^{0}=\{\emptyset\}$. For $\sigma \in K, l k(\sigma, K)=\{\tau \in K: \tau \cap \sigma=\emptyset, \tau * \sigma \in K\}$ denotes its link and $\operatorname{st}(\sigma, K)=\sigma * l k(\sigma, K)$ its star. The union of two complexes K, L will be denoted by $K+L$. A subcomplex $L \subseteq K$ is said to be top generated if every facet of L is also a facet of K.

The notation $K \searrow L$ will mean that K (simplicially) collapses to L. A complex is collapsible if it collapses to a single vertex and PL-collapsible if it has a subdivision which is collapsible. The simplicial nerve $\mathcal{N}(K)$ of K is the complex whose vertices are the facets of K and whose simplices are the finite subsets of facets of K with non-empty intersection.

Two complexes are PL-isomorphic if they have a common subdivision. A combinatorial d-ball is a complex PL-isomorphic to Δ^{d}. A combinatorial d-sphere is a complex PL-isomorphic to $\partial \Delta^{d+1}$. By convention, $\partial \Delta^{0}=\{\emptyset\}$ is a sphere of dimension -1 . A combinatorial d-manifold is a complex M such that $l k(v, M)$ is a combinatorial ($d-1$)-ball or ($d-1$)-sphere for every $v \in V_{M}$. A ($d-1$)-simplex in a combinatorial d-manifold M is a face of at most two d-simplices of M and the boundary ∂M is the complex generated by the ($d-1$)-simplices which are faces of exactly one d-simplex. Combinatorial d-balls and d-spheres are combinatorial d-manifolds. The boundary of a combinatorial d-ball is a combinatorial $(d-1)$-sphere.

2.2. Non-homogeneous balls and spheres

In order to make the presentation self-contained, we recall first the definition and some basic properties of nonhomogeneous balls and spheres. For a comprehensive exposition of the subject, the reader is referred to [5] (see also [$6, \S 2.2$] for a brief summary).

NH -balls and NH -spheres are special types of NH -manifolds, which are the non-pure versions of combinatorial manifolds. NH -manifolds have a local structure consisting of regularly-assembled pieces of Euclidean spaces of different dimensions. In Fig. 1 we show some examples of NH -manifolds and their underlying spaces. NH -manifolds, NH -balls and NH -spheres are defined as follows.

Definition. An NH -manifold (resp. NH -ball, NH -sphere) of dimension 0 is a combinatorial manifold (resp. ball, sphere) of dimension 0 . An NH -sphere of dimension -1 is, by convention, the complex $\{\emptyset\}$. For $d \geq 1$, we define by induction:

- An NH-manifold of dimension d is a complex M of dimension d such that $l k(v, M)$ is an $N H$-ball or an $N H$-sphere (possibly of dimension -1) for all $v \in V_{M}$.
- An $N H$-ball of dimension d is a PL-collapsible $N H$-manifold of dimension d.
- An $N H$-sphere of dimension d and homotopy dimension k is an $N H$-manifold S of dimension d such that there exist a top generated $N H$-ball B of dimension d and a top generated combinatorial k-ball L such that $B+L=S$ and $B \cap L=\partial L$. We say that $S=B+L$ is a decomposition of S and write $\operatorname{dim}_{h}(S)$ for the homotopy dimension of S.

The definitions of NH -ball and NH -sphere are motivated by the classical theorems of Whitehead [9] and Newman [7] (see e.g. [8, Corollaries 3.28 and 3.13]). Just like for classical combinatorial manifolds, it can be seen that the class of NH -manifolds (resp. NH -balls, NH -spheres) is closed under subdivision and that the link of every simplex in an NH -manifold is an NH -ball or an NH -sphere. Also, the homogeneous NH -manifolds (resp. NH -balls, NH -spheres) are

https://daneshyari.com/en/article/414540

Download Persian Version:
https://daneshyari.com/article/414540

Daneshyari.com

[^0]: E-mail address: ncapitel@dm.uba.ar.

