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pends on the set of design points chosen to run the simulator. Due to computational cost,
such training set is bound to be limited and quantifying the resulting uncertainty in the
hyper-parameters of the emulator by uni-modal distributions is likely to induce bias. In
order to quantify this uncertainty, this paper proposes a computationally efficient sampler

Iézﬁ‘:/;;fbmcess based on an extension of Asymptotically Independent Markov Sampling, a recently devel-
Hyper-parameter oped algorithm for Bayesian inference. Structural uncertainty of the emulator is obtained as
Marginalisation a by-product of the Bayesian treatment of the hyper-parameters. Additionally, the user can
Optimisation choose to perform stochastic optimisation to sample from a neighbourhood of the Maxi-
MCMC mum a Posteriori estimate, even in the presence of multimodality. Model uncertainty is also
Simulated annealing acknowledged through numerical stabilisation measures by including a nugget term in the

formulation of the probability model. The efficiency of the proposed sampler is illustrated
in examples where multi-modal distributions are encountered. For the purpose of repro-
ducibility, further development, and use in other applications the code used to generate the
examples is freely available for download at https://github.com/agarbuno/paims_codes.
© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Computationally expensive computer codes are frequently needed to implement mathematical models which are
assumed to be reliable approximations to physical processes. Such simulators often require intensive use of computational
resources that makes them inefficient if further exploitation of the code is needed for optimisation, uncertainty propagation
and sensitivity analysis (Forrester et al., 2008; Kennedy and O’Hagan, 2001a). For this reason, surrogate models are needed
to perform fast approximations to the output of demanding simulators and enable efficient exploration and exploitation
of the input space. In this context, Gaussian processes are a common choice to build statistical surrogates - also known as
emulators - which allow to take into account the uncertainty derived from the inability to evaluate the original model in
the whole input space. Gaussian processes have become popular in recent years due to their ability to fit complex mappings
between outputs and inputs by means of a non-parametric hierarchical structure. Such applications are found, amongst
many other areas, in Machine Learning (Rasmussen and Williams, 2006), Spatial Statistics (Cressie, 1993, with the name of
Kriging), likelihood-free Bayesian Inference (Wilkinson, 2014) and Genetics (Kalaitzis and Lawrence, 2011).
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To build an emulator, a number of runs from the simulator is needed, but due to computing limitations only a small
number of evaluations can be performed. With a small amount of data, it is possible that the uncertainty in the parameters
of the model cannot be described by a uni-modal distribution. In such scenarios, Model Uncertainty Analysis (Draper, 1995)
is capable of setting a proper framework that acknowledges all uncertainties related to the idealisations made through the
modelling assumptions and the available, albeit limited information. To this end, hierarchical modelling should be taken into
account. This corresponds to adding a layer of structural uncertainty to the assumed emulator either in a continuous or
discrete manner (see Draper, 1995, Section 4). In the case of Gaussian processes, continuous structural uncertainty can be
accounted for as a natural by-product of Bayesian inference. Hence, this is pursued in this work by focusing on samplers
capable of exploring multi-modal distributions.

In order for the Gaussian process to be able to replicate the relationship between inputs and outputs and make
predictions, a training phase is necessary. Such training involves the estimation of the parameters of the Gaussian process
from the data collected by running the simulator. These parameters are referred to as hyper-parameters. The selection of the
hyper-parameters is usually done by using Maximum Likelihood estimates (MLE), or their Bayesian counterpart Maximum
a Posteriori estimates (MAP) (Oakley, 1999; Rasmussen and Williams, 2006), or by sampling from the posterior distribution
(Williams and Rasmussen, 1996) in a fully Bayesian manner.

In this paper we assume a scenario where the task of generating new runs from the simulator is prohibitive. Such limited
information is not enough to completely identify either a candidate or a region of appropriate candidates for the hyper-
parameters. In this scenario, traditional optimisation routines (Nocedal and Wright, 2004) are not able to guarantee global
optima when looking for the MLE or MAP, and a Bayesian treatment is the only option to account for all the uncertainties
in the modelling. In the literature, however, it is common to see that MLE or MAP alternatives are preferred (Kennedy and
O’Hagan, 2001a; Gibbs, 1998) due to the numerical burden of maximising the likelihood function or because it is assumed
that Bayesian integration will not produce results worth the effort. Though it is a strong argument in favour of estimating
isolated candidates, in high-dimensional applications it is difficult to assess if the number of runs of the simulator is sufficient
to produce robust hyper-parameters. Robustness is usually measured with a prediction-oriented metric such as root-
mean-square error (RMSE) (Kennedy and O’Hagan, 2001b), ignoring uncertainty and risk assessment of choosing a single
candidate of the hyper-parameters by an inference process with limited data. In order to account for such uncertainty in the
hyper-parameters when making predictions, numerical integration should be performed. However, methods as quadrature
approximation become infeasible as the number of dimensions increases (Kennedy and O’Hagan, 2001a). Therefore, an
appropriate approach is to perform Monte Carlo integration (MacKay, 1998). This allows to approximate any integral by
means of a weighted sum, given a sample from the correct distribution.

In Gaussian processes, as in many other applications of statistics, the target distribution of the hyper-parameters cannot
be sampled directly and one should resort to Markov Chain Monte Carlo (MCMC) methods (Robert and Casella, 2004). MCMC
methods are powerful statistical tools but have a number of drawbacks if not tuned properly, particularly if one wishes to
sample from multi-modal distributions (Neal, 2001; Hankin, 2005). One of such limitations is the tuning of the proposal
distribution, which allows the generation of a candidate in the chain. This proposal function has to be tuned with parameters
that define its ability to move through the sample space. If an excessively wide spread is selected, this will produce samples
with space-filling properties but which are likely to be rejected. On the other hand, having a narrower spread will cause
an inefficient exploration of the sample space by taking short updates of the states of the chain, known in the literature as
Random Walk behaviour (Neal, 1993). In practice it is desirable to use a proposal distribution which is capable of balancing
both extremes. To find an appropriate tuning in high-dimensional spaces with sets of highly correlated variables can be
an overwhelming task and often MCMC samplers can become expensive due to the long time needed to reach stationarity
(Ching and Chen, 2007). Neal (1998) and Williams and Rasmussen (1996) favour the Hybrid Monte Carlo (HMC) method to
generate a sample from the posterior distribution, preventing the random walk behaviour of traditional MCMC methods.
If tuned correctly, HMC should be able to explore most of the input space (Liu, 2008). Such tuning process is problem-
dependent and there is no guarantee that the method will sample from all existing modes, thus failing to adapt well to
multi-modal distributions (Neal, 2011).

This paper proposes a sampler for the hyper-parameters of a Gaussian process based on recently developed methods for
Bayesian inference problems. Additionally, it uses the Transitional Markov Chain Monte Carlo (TMCMC) method of Ching
and Chen (2007) to set a framework for the parallelisation of Asymptotically Independent Markov Sampling in both the
context of hyper-parameter sampling (AIMS) (Beck and Zuev, 2013) and in stochastic optimisation (AIMS-OPT) (Zuev and
Beck, 2013) reminiscent of Stochastic Subset Optimisation (Taflanidis and Beck, 2008a,b). Such an extension is built using
concepts of Particle Filtering methods (Andrieu et al., 2010; Gramacy and Polson, 2009), Adaptive Sequential Monte Carlo
(Del Moral et al., 2006, 2012) and Delayed Rejection Samplers (Zuev and Katafygiotis, 2011; Mira, 2001). AIMS is chosen since
it provides a framework for Sequential Monte Carlo sampling (Neal, 1996, 2001; Del Moral et al., 2006) which automatically
chooses the sequence of transitions. Moreover, it uses most of the information generated in the previous step in the sequence
as opposed to traditional sequential methods, thus building a robust sampler when applied to multi-modal distributions.
Finally, by using the AIMS-OPT algorithm a solution is built by means of a nested sequence of subsets, which converges to
the optimal solution set. The algorithm can be terminated prematurely given a previously chosen accuracy threshold, thus
providing a set of nearly optimal solutions. Whether it is composed by a single element, or a set of elements whose objective
function differs by a negligible quantity, a full characterisation of the optimal solution is achieved. This contrasts with the
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