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a b s t r a c t

Reduced rank regression is consideredwhen the criterion function is possibly non-smooth,
which includes the previously un-studied reduced rank quantile regression. The approach
used is based on empirical likelihood with a rank constraint. Asymptotic properties of
the maximum empirical likelihood estimator (MELE) are established using general results
on over-parametrized models. Empirical likelihood leads to more efficient estimators
than some existing estimators. Besides, in the framework of empirical likelihood, it is
conceptually straightforward to test the rank of the unknown matrix. The proposed
methods are illustrated by some simulation studies and real data analyses.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Reduced rank regression was proposed in the 1950s (Anderson, 1951) with the purpose of introducing a more
parsimonious model in cases with multiple responses. Let y = (y1, . . . , yq)T be the q responses that are to be related to
the p-dimensional predictor x = (x1, . . . , xp)T. The multivariate linear regression model is given by

y = α+ BTx+ e, (1)

where α ∈ Rq is the intercept, B is the p× q coefficient matrix and e is the q-vector of mean zero noises. Different columns
of B are associated with different responses. If we assume the noises for different responses are independent and use
ordinary least squares procedure to fit themodel, the procedure is the same as linear regression for each response separately.
Reduced rank regression aims at producing amore parsimonious model with fewer than p×q parameters by assuming that
rank(B) ≤ r for an integer r < min(p, q). Informally the number of parameters in reduced rank regression can be counted as
follows. Assuming the first r columns of B are linearly independent, we have the parametrization B = (B1, B1BT

2) for a rank r
matrix B, where B1 is a p×r matrix and B2 is a (q−r)×r matrix, and the number of free parameters is thus r(p+q−r) < pq.
With reduced degrees of freedom, the reduced rank regression has a potential to produce a more efficient estimator of B, as
shown in Anderson (1999). Some more recent references on reduced rank regression include Geweke (1996), Bunea et al.
(2011, 2012), Chen and Huang (2012), Chen et al. (2012), Chen et al. (2013) and Lian and Ma (2013).

In this paper, we consider reduced rank regression in a more general framework, allowing also the criterion functions to
be non-smooth, as for median or quantile regression, although the framework proposed here is more generally applicable
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than the numerical examples provided later. For example, we can also deal with generalized linear model with multivariate
binary or count responses. Letβ = (βT

1, . . . ,β
T
q)

T
= vec(B) and letα ∈ Rl be other parameters in themodel (for exampleα is

the intercept in (1)). Let θ = (αT, βT)T be all the parameters. We assume there arem estimating equations, withm ≥ qp+ l,

g(z, θ) = (g1(z, θ), . . . , gm(z, θ))T,

where z = (xT, yT)T. For example, in the standard reduced rank regression for mean, we can use the estimating equations
xj(yk − αk − xTβk) = 0, j = 1, . . . , p, k = 1, . . . , q together with yk − αk − xTβk = 0, k = 1, . . . , q. It is known that least
squares procedure is extremely sensitive to outliers or heavy-tailed error distribution and does not have asymptotically
normal distribution when the second moment of the error is not finite. An obvious alternative to least squares procedure is
to replace the quadratic loss with absolute least deviation loss, resulting in median regression. More generally, suppose we
want to estimate the τ th quantiles of the q responses, we can use the estimating equations xj(τ − I{yk ≤ αk + xTβk}) =

0, j = 1, . . . , p, k = 1, . . . , q together with τ − I{yk ≤ αk+ xTβk} = 0, k = 1, . . . , q. When τ = 1/2 the above reduces to
median regression. The flexibility of allowingmore estimating equations than the number of parameters also means we can
easily incorporate additional information on the parameters. For example, we can collect the estimating equations for mean
regression and median regression together, if the error distribution is symmetric, to improve efficiency. Thus our approach
is more general than previous reduced rank models which solely focused on least squares loss.

We propose to use empirical likelihood (Owen, 1988, 1990) which naturally deals with a general set of estimating
equations. As demonstrated in Qin and Lawless (1994) andNewey and Smith (2004), it requires less restrictive distributional
assumptions for statistical inferences. Empirical likelihood involving non-smooth criterion functions has previously been
treated in Lopez et al. (2009). Notably, when there are more estimating equations than the number of parameters, which
is typically the case when using reduced rank regression, Qin and Lawless (1994) showed that the empirical likelihood
approach is fully efficient in the sense that the estimator has the same asymptotic variance as the optimal estimator obtained
from the class of estimating equations that are linear combinations of g1, . . . , gm (see Corollary 2 in Qin and Lawless (1994)).
Another advantage of using empirical likelihood is that it is easy to develop a test statistic for the coefficient matrix rank
based on empirical likelihood ratio, which is an important but difficult problem.

The rest of the paper is organized as follows. In Section 2, we present the general framework for reduced rank regression
based on estimating equations using empirical likelihood. Section 3 specializes the general results to the case of mean
regression and quantile regression, verifying themaximum empirical likelihood estimator is more efficient than some naive
alternative estimation approaches. Section 4 reports our numerical results, using both simulations and two data examples.
We conclude with some discussions in Section 5. The technical assumptions and theoretical proofs are relegated to the
supplementary material (Appendix A).

2. Empirical likelihood for reduced rank regression

Assumewe are given i.i.d. observations zi = (xTi , y
T
i )

T, i = 1, . . . , n from some distribution F with unknown parameters
(α, B) with α ∈ Rl and B ∈ Rp×q. Let β = vec(B) and θ = (αT, βT)T. With m estimating equations g(z, θ), which satisfy
E[g(z, θ)] = 0 if θ is the true value, the empirical likelihood ratio is defined as

EL(θ) = sup


n

i=1

npi|pi ≥ 0,


i

pi = 1,


i

pig(zi, θ) = 0


,

and themaximum empirical likelihood estimator (MELE) is defined to be themaximizer of EL(θ), which exists and is unique
under mild regularity assumptions. The reduced rank estimator is naturally defined as the maximizer of EL(θ) under the
constraint rank(B) ≤ r , for a given integer r . When the maximizer is well defined, the Lagrange multiplier method provides
the optimal weights to be

pi =
1
n

1
1+ λTg(zi, θ)

, (2)

where the multiplier λ is determined by
i

1
n

g(zi, θ)
1+ λTg(zi, θ)

= 0, (3)

and thus λ = λ(θ) is considered as a function of θ.
The following matrix plays a role in the proof of our main result:

V =

V11 V12

VT
12 0


,

where V11 = Eg(z, θ)gT(z, θ) is anm×m symmetric matrix, and V12 = −
∂

∂θT
E[g(z, θ)] is anm× (pq+ l) matrix. Note we

do not assume that g(z, θ) is differentiable in θ, only that its expectation is.
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