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a b s t r a c t

We study a two-person game based on the well-studied brushing process on graphs.
Players Min and Max alternately place brushes on the vertices of a graph. When a vertex
accumulates at least asmany brushes as its degree, it sends one brush to each neighbor and
is removed from the graph; thismay in turn induce the removal of other vertices. The game
ends once all vertices have been removed. Min seeks to minimize the number of brushes
played during the game,whileMax seeks tomaximize it.Whenboth players play optimally,
the length of the game is the game brush number of the graph G, denoted bg (G).

By considering strategies for both players and modeling the evolution of the game
with differential equations, we provide an asymptotic value for the game brush number
of the complete graph; namely, we show that bg (Kn) = (1 + o(1))n2/e. Using a fractional
version of the game, we couple the game brush numbers of complete graphs and the
binomial randomgraphG(n, p). It is shown that for pn ≫ ln n asymptotically almost surely
bg (G(n, p)) = (1 + o(1))pbg (Kn) = (1 + o(1))pn2/e. Finally, we study the relationship
between the game brush number and the (original) brush number.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Imagine a network of pipes that must be periodically cleaned of a regenerating contaminant, say algae. In cleaning such
a network, there is an initial configuration of brushes on vertices, and every vertex and edge is initially regarded as dirty.
A vertex is ready to be cleaned if it has at least as many brushes as incident dirty edges. When a vertex is cleaned, it sends
one brush along each incident dirty edge; these edges are now said to be clean. (No brush ever traverses a clean edge.) The
vertex is also deemed clean. Excess brushes remain on the clean vertex and take no further part in the process. (In fact, for
our purposes in this paper, we may think about clean vertices as if they were removed from the graph.) The goal is to clean
all vertices (and hence also all edges) of the graph using as few brushes as possible. Theminimumnumber of brushes needed
to clean a graph G is the brush number of G, denoted b(G).

Fig. 1 illustrates the cleaning process for a graph Gwhere there are initially 2 brushes at vertex a. The solid edges indicate
dirty edges while the dotted edges indicate clean edges. For example, the process starts with vertex a being cleaned, sending
a brush to each of vertices b and c.

This model, which was introduced in [15], is tightly connected to the concept of minimum total imbalance of a graph,
which is used in graph drawing theory. The cleaning process has been well studied, especially on random graphs [1,17].
(See also [9,13] for algorithmic aspects, [16,18] for a related model of cleaning with brooms, [6] for a variant with no edge
capacity restrictions, [4] for a variant in which vertices can send out no more than k brushes, and [11] for a combinatorial
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Fig. 1. An example of the cleaning process for graph G.

game.) Owing to inspiration fromchip-firing processes [2,14], brushes disperse froman individual vertex in unison, provided
that their vertexmeets the criteria to be cleaned.Models inwhichmultiple verticesmaybe cleaned simultaneously are called
parallel cleaning models; see [10] for more details. In contrast, sequential cleaning models mandate that vertices get cleaned
one at a time. The variant considered in [15] and the one we consider in this paper are sequential in nature.

The brushing game that we introduce in this paper is a two-player game played on a graph G. Initially, every vertex and
edge is dirty and there are no brushes on any vertices. The players, Max andMin, alternate turns; on each turn, a player adds
one brush to a vertex of his or her choosing. When a vertex accumulates at least as many brushes as it has dirty neighbors, it
fires, sending one brush to each dirty neighbor. All edges incident to this vertex become clean, and the vertex itself becomes
clean. This may in turn make other vertices ready to fire, so the process continues until we obtain a stable configuration.
(It is known that the sequence in which vertices fire does not affect the distribution of brushes on dirty vertices—see below
for more details.) The game ends when all vertices (and so all edges as well) are clean. Max aims to maximize the number
of brushes played before this point, while Min aims to minimize it. When Min starts and both players play optimally, the
length of the game on G is the game brush number of G, denoted bg(G); we use bg(G) to denote the variant of the game in
which Max plays first.

The game brush number follows in the same spirit as the game matching number [7], game chromatic number [8],
game domination number [5], toppling number [3], etc., in which players with conflicting objectives together make choices
that produce a feasible solution to some optimization problem. The general area can be called competitive optimization.
Competitive optimization processes can also be viewed as on-line problems in which one wants to build a solution to
some optimization problem, despite not having complete control over its construction. In this context, the game models
adversarial analysis of an algorithm for solving the problem: one player represents the algorithm itself, the other player
represents the hypothetical adversary, and the outcome of the game represents the algorithm’s worst-case performance.

Throughout this paper, we consider only finite, simple, undirected graphs. For background on graph theory, the reader
is directed to [19].

1.1. Main results

Let us start with the following convenient bound proved in Section 2.

Theorem 1. Always
bg(G) − bg(G)

 ≤ 1.

Theorem 1 is best possible. For the star K1,3k−1, we have bg(K1,3k−1) = 2k − 1 and bg(K1,3k−1) = 2k; in particular, we
have bg(P3) = 1 and bg(P3) = 2. On the other hand, for n ≥ 3 we have bg(Cn) = 3 and bg(Cn) = 2. (We remark without
proof that the graph Gk obtained by taking 5k triangles and identifying a single vertex of each has bg(Gk) = 8k + 1 andbg(Gk) = 8k; this yields another family – with unbounded brush number – witnessing sharpness of the bound. We leave
the details to the reader.)

For the remainder of the paper, wewill be concerned primarilywith the asymptotics of bg over various families of graphs.
Hence the difference between bg and bg is unimportant; we use whichever is most convenient (but prefer bg in general).

Because the game produces a feasible solution to the original problem, the value of the game parameter is bounded by
that of the original optimization parameter.

Proposition 2. Always b(G) ≤ bg(G) ≤ 2b(G) − 1 and b(G) ≤ bg(G) ≤ 2b(G).

In Section 2, we show that these bounds, though elementary, are best possible in a strong sense:

Theorem 3. For every rational number r in [1, 2), there exists a graph G such that

bg(G)

b(G)
= r.

We next turn our attention to complete graphs. Our next main result (proved in Section 3) provides the asymptotic
behavior of the game brush number for Kn.

Theorem 4. bg(Kn) = (1 + o(1))n2/e
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