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a b s t r a c t

Given a graph G that admits a perfect matching, we investigate the parameter η(G) (origi-
nally motivated by computer graphics applications) which is defined as follows. Among all
nonnegative edge weight assignments, η(G) is the minimum ratio between (i) the maxi-
mumweight of a perfect matching and (ii) the maximumweight of a general matching. In
this paper, we determine the exact value of η for all rectangular grids, all bipartite cylin-
drical grids, and all bipartite toroidal grids. We introduce several new techniques to this
endeavor.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

All graphs in this paper are finite, undirected and connected. We refer to the textbook of Diestel [3] for any undefined
graph terminology. Let G = (V , E) be a graph. For a vertex v ∈ V , we define its neighborhood as N(v) = {u : uv ∈ E} and
the vertices in N(v) are called the neighbors of v. The degree d(v) of a vertex v ∈ V is defined as d(v) = |N(v)|. Theminimum
degree of G is denoted by δ(G). The average degree of G is defined as follows: d̄(G) =

1
n

n
i=1 d(vi), where V = {v1, . . . , v|V |}.

As usual Kn, n ≥ 1, (resp. Kn,m, n,m ≥ 1) denotes the complete graph (resp. complete bipartite graph) on n vertices (resp.
with n vertices in one partition andm in the other partition). Finally, Cn, n ≥ 3, denotes the induced cycle on n vertices.

Amatching in G is a setM ⊆ E such that no two edges inM share a common vertex. Given a matchingM in a graph G, we
say that M saturates a vertex v and that vertex v is M-saturated, if some edge of M is incident to v. A matching M is perfect
if |M| =

|V |

2 , i.e., all vertices in G are M-saturated. A matching M is maximal if there exists no other matching M ′ such that
M ⊆ M ′ and |M ′

| > |M|. A matchingM is maximum if it has maximum cardinality.
Let w : E → R+ be a weight function on the edges of G. We will refer to w as an edge weighting of G. Given a subset

E ′
⊆ E, the quantity w(E ′) =


e∈E′ w(e) is called theweight of E ′. Amaximumweight matching in G, denoted byM∗(G), is a

matching of maximum total weight in G. A maximum weight perfect matching in G, denoted by P∗(G), is a perfect matching
of maximum total weight (among all perfect matchings in G). Given a graph G = (V , E) which admits a perfect matching,
the parameter η(G) is defined as

η(G) = min
w:E→R+

w(P∗(G))

w(M∗(G))
.
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The study of the parameter η was initiated in [2] and motivated by applications in computer graphics (see [5,6]) where
one seeks to convert a trianglemesh into a quadrangulation. Each triangle is represented by a vertex, two vertices are linked
by an edge if the corresponding triangles are adjacent, and edge weights correspond to how ‘‘compatible’’ two triangles are
(the definition of compatibility is largely dependent on the specific objective). Due to this application, the first study focused
on cubic graphs, i.e. graphs inwhich all vertices have degree 3. Compared to triangulations, structured grids define a simpler
but also widely used mesh [7]. By merging two adjacent grid cells, we obtain an unstructured grid with half as many cells.
Thanks to the regular nature of structured grids we can calculate the exact values of η for each grid size, instead of only
upper and lower bounds as in the case of cubic graphs.

Since the parameter η can be defined for any graph which admits a perfect matching, its study is of interest from a
theoretical point of view. Furthermore, the value of the parameterη tells us how far or close themaximumweight of a perfect
matching is from themaximumweight of a general matching in a given graph, considering any nonnegative edgeweighting.
Thus, it is natural to consider several different graph classes. Notice that the problem of deciding whether η(G) = c , for a
given graph G and a nonnegative real c , is not known to be in P nor to be NP-hard.

It is easy to see that we necessarily have 0 ≤ η(G) ≤ 1, for any graph G admitting a perfect matching. In [2], the authors
characterize those graphs G for which η(G) = 0 as well as the graphs G for which η(G) = 1. Furthermore, they provide
lower and upper bounds on η for several types of bridgeless cubic graphs, i.e. cubic graphs not containing any edge whose
deletion disconnects the graph. Finally, the authors show that if a graph G admits a perfect matching, then the value of η(G)
is well defined.

The main technique available so far to prove a lower bound on η is the following. Suppose G = (V , E) contains k perfect
matchings P1, . . . , Pk such that each edge ofGbelongs to at least r of thesematchings. Consider a nonnegative edgeweighting
w of E. Then rw(M∗(G)) ≤

k
i=1 w(Pi). Without loss of generality, we may assume that w(P1) ≥ w(P2) ≥ · · · ≥ w(Pk).

Hence, rw(M∗(G)) ≤ kw(P1) ≤ kw(P∗(G)) which implies that η(G) ≥
r
k . This proof technique has a major weakness. It

cannot prove lower bounds on η higher than 1 over the average degree d̄(G) of G, since r
k is upper bounded by 1

d̄(G)
. Indeed,

since the size of a perfect matching is |V |

2 , it follows from the above that k |V |

2 ≥ r|E|, i.e. k|V | ≥ 2|E|r . Now using the fact
that 2|E| =

|V |

i=1 d(vi), we deduce that k ≥ rd̄(G) and so r
k ≤

1
d̄(G)

.
In this paper, we introduce new techniques that break this barrier (see Section 2). These techniques allow us to compute

the exact value of η for the following graph classes: (i) rectangular grids; (ii) bipartite cylindrical grids; (iii) bipartite toroidal
grids (see Section 3 for the corresponding definitions and theorems). Section 4 is devoted to concluding remarks and open
problems.

2. New techniques to determine lower and upper bounds

In this section, we introduce new techniques that enable us to obtain upper and lower bounds on the value of η. We start
with a lemma allowing us to determine upper bounds. It generalizes an argument given in [2].

Lemma 1. Let G = (V , E) be a graph with δ(G) ≥ 2. Suppose G contains a perfect matching and there exists a maximal matching
that does not saturate a vertex v of degree δ(G). Then, η(G) ≤

δ−1
δ

.

Proof. Consider a vertex v of G with d(v) = δ(G) and let M be a maximal matching not saturating v. Let u1, u2, . . . , uδ(G)

be the neighbors of v. Since M is maximal, all neighbors of v are necessarily M-saturated. Let uiwi, i = 1, . . . , δ(G),
be the edges of M saturating the neighbors of v. Notice that the neighbors of v may be adjacent, and that the edges
of M saturating the neighbors of v are not necessarily distinct. Now any perfect matching P contains at most δ(G) − 1
edges in {uiwi, i = 1, . . . , δ(G)} since P saturates v. Define a nonnegative edge weighting w such that w(uiwi) = 1 for
i = 1, . . . , δ(G), and w(e) = 0 otherwise. It follows that w(P) ≤ δ(G) − 1 and w(M) = δ(G). Hence, η(G) ≤

δ(G)−1
δ(G)

. �

The next lemma allows us to obtain lower bounds on η.

Lemma 2. Let c, r ≥ 0 be two integers and G = (V , E) be a graph which admits a perfect matching. Let G1 = (V , E1),G2 =

(V , E2), . . . ,Gk = (V , Ek) be k spanning subgraphs of G admitting each a perfect matching and such that η(Gi) ≥ c for
i = 1, . . . , k. If each edge of G is contained in at least r sets among E1, E2, . . . , Ek, then η(G) ≥

c r
k .

Proof. First, notice that since G1, . . . ,Gk are spanning subgraphs of G, any perfect matching in Gi, i ∈ {1, . . . , k}, is also a
perfect matching in G. Now, letM be a maximumweight matching of G for some nonnegative edge weighting w. Since each
edge of G is contained in at least r sets among E1, E2, . . . , Ek, we have

k
i=1

w(M ∩ Ei) ≥ r w(M). (1)

Assume, without loss of generality, that w(M ∩ E1) ≥ w(M ∩ Ei) for i = 2, . . . , k. Then, inequality (1) implies that

w(M ∩ E1) ≥
r w(M)

k
. (2)
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