# The competition graphs of oriented complete bipartite graphs 

Suh-Ryung Kim ${ }^{\text {a }}$, Jung Yeun Lee ${ }^{\text {a }}$, Boram Park ${ }^{\text {b }}$, Yoshio Sano ${ }^{\text {c,* }}$<br>${ }^{\text {a }}$ Department of Mathematics Education, Seoul National University, Seoul 151-742, Republic of Korea<br>${ }^{\mathrm{b}}$ Department of Mathematics, Ajou University, Suwon 443-749, Republic of Korea<br>${ }^{\text {c }}$ Division of Information Engineering, Faculty of Engineering, Information and Systems, University of Tsukuba, Ibaraki 305-8573, Japan

## A R T I C L E IN F O

## Article history:

Received 30 April 2014
Received in revised form 19 July 2015
Accepted 23 July 2015
Available online 24 August 2015

## Keywords:

Competition graph
Complete bipartite graph
Orientation
Edge clique cover
Tournament


#### Abstract

In this paper, we study the competition graphs of oriented complete bipartite graphs. We characterize graphs that can be represented as the competition graphs of oriented complete bipartite graphs. We also present the graphs having the maximum number of edges and the graphs having the minimum number of edges among such graphs.


© 2015 Elsevier B.V. All rights reserved.

## 1. Introduction

The competition graph $C(D)$ of a digraph $D$ is the (simple undirected) graph $G$ defined by $V(G)=V(D)$ and $E(G)=$ $\left\{u v \mid u, v \in V(D), u \neq v, N_{D}^{+}(u) \cap N_{D}^{+}(v) \neq \emptyset\right\}$, where $N_{D}^{+}(x)$ denotes the set of out-neighbors of a vertex $x$ in $D$. We denote the set of in-neighbors of a vertex $x$ in a digraph $D$ by $N_{D}^{-}(x)$ and denote the set of neighbors of a vertex $x$ in a graph $G$ by $N_{G}(x)$. Competition graphs arose in connection with an application in ecology (see [2]) and also have applications in coding, radio transmission, and modeling of complex economic systems. Early literature of the study on competition graphs is summarized in the survey papers by Kim [6] and Lundgren [10].

For a digraph $D$, the underlying graph of $D$ is the graph $G$ such that $V(G)=V(D)$ and $E(G)=\{u v \mid(u, v) \in A(D)\}$. An orientation of a graph $G$ is a digraph having no directed 2 -cycles, no loops, and no multiple arcs whose underlying graph is G. An oriented graph is a graph with an orientation. A tournament is an oriented complete graph. The competition graphs of tournaments have been actively studied (see [1,3,5], and [4] for papers related to this topic).

It seems to be a natural shift to take a look at the competition graphs of orientations of complete bipartite graphs. First, we can observe that the competition graph of an orientation of a complete bipartite graph is a disconnected graph as follows.

Proposition 1.1. Let $D$ be an orientation of a complete bipartite graph $K_{m, n}$ with bipartition $(U, V)$, where $|U|=m$ and $|V|=n$. Then, the competition graph of $D$ has no edges between the vertices in $U$ and the vertices in $V$.
Proof. Since $D$ is an orientation of $K_{m, n}, N_{D}^{+}(x) \cup N_{D}^{-}(x)=N_{K_{m, n}}(x)$ holds for any vertex $x$ in $D$. Take any vertex $u$ in $U$ and any vertex $v$ in $V$. Since $N_{K_{m, n}}(u) \subseteq V, N_{K_{m, n}}(v) \subseteq U$, and $U \cap V=\emptyset$, we have $N_{K_{m, n}}(u) \cap N_{K_{m, n}}(v)=\emptyset$. Therefore, $N_{D}^{+}(u) \cap N_{D}^{+}(v)=\emptyset$. Thus, there is no edge between $u$ and $v$ in the competition graph of $D$. Hence the proposition holds.

[^0]

Fig. 1. An orientation $D$ of the complete bipartite graph $K_{5,4}$ and its competition graph $G_{1} \cup G_{2}$. (A pair of parallel arrows means that there is an arc from each vertex in the ellipse from which the arc initiates to each vertex in the ellipse to which the arc terminates.)

Based on Proposition 1.1, we introduce the notion of competition-realizable pairs.
Definition 1. Let $G_{1}$ and $G_{2}$ be graphs with $m$ vertices and $n$ vertices, respectively. The pair ( $G_{1}, G_{2}$ ) is said to be competitionrealizable through $K_{m, n}$ (in this paper, we only consider orientations of $K_{m, n}$ and therefore we omit "through $K_{m, n}$ ") if the disjoint union of $G_{1}$ and $G_{2}$ is the competition graph of an orientation of the complete bipartite graph $K_{m, n}$ with bipartition $\left(V\left(G_{1}\right), V\left(G_{2}\right)\right)$.

Let us see an example. Let $G_{1}$ be the graph defined by $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ and $E\left(G_{1}\right)=\left\{u_{1} u_{2}, u_{1} u_{3}, u_{2} u_{3}, u_{4} u_{5}\right\}$, and let $G_{2}$ be the graph defined by $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $E\left(G_{2}\right)=\left\{v_{1} v_{2}, v_{3} v_{4}\right\}$. Then the pair $\left(G_{1}, G_{2}\right) \cong\left(K_{3} \cup K_{2}, K_{2} \cup\right.$ $K_{2}$ ) is competition-realizable through $K_{5,4}$ (see Fig. 1).

In this paper, we study the competition graphs of oriented complete bipartite graphs by using the notion of competitionrealizable pairs. We characterize graphs that can be represented as the competition graphs of oriented complete bipartite graphs. We also present the graphs having the maximum number of edges and the graphs having the minimum number of edges among such graphs.

## 2. A characterization of competition-realizable pairs in terms of edge clique covers

In this section, we present a theorem which characterizes a competition-realizable pair ( $G_{1}, G_{2}$ ) in terms of edge clique covers of the graphs $G_{1}$ and $G_{2}$ without mentioning oriented complete bipartite graphs.

By a family, we mean a multiset of subsets of a set. A clique of a graph $G$ is a set of vertices of $G$ in which any two vertices are adjacent in $G$. We also consider an empty set $\emptyset$ as a clique. An edge clique cover of a graph $G$ is a family $\mathcal{F}$ of cliques of $G$ such that, for any two adjacent vertices of $G$, there is a clique in $\mathcal{F}$ containing both of them. For a graph $G$, we denote by $\theta_{E}(G)$ the minimum size of an edge clique cover of $G$.

The intersection graph $\Omega(\mathcal{F})$ of a family $\mathcal{F}$ is the graph whose vertex set is $\mathcal{F}$ and in which two sets $X$ and $Y$ in $\mathcal{F}$ are adjacent if and only if $X \cap Y \neq \emptyset$. Recall that a graph isomorphism from $G_{1}$ to $G_{2}$ is a bijection $\varphi$ from $V\left(G_{1}\right)$ to $V\left(G_{2}\right)$ such that $x y \in E\left(G_{1}\right)$ if and only if $\varphi(x) \varphi(y) \in E\left(G_{2}\right)$. For a family $\mathcal{F}$ of subsets of a set $V$, the dual family of $\mathcal{F}$ is the family $\mathcal{F}^{*}$ defined by $\mathcal{F}^{*}=\{V \backslash S \mid S \in \mathcal{F}\}$.

Theorem 2.1. Let $G_{1}$ and $G_{2}$ be graphs. Then, $\left(G_{1}, G_{2}\right)$ is a competition-realizable pair if and only if there exist edge clique covers $\mathcal{F}_{1}$ and $\mathcal{F}_{2}$ of $G_{1}$ and $G_{2}$, respectively, such that
(i) there exist graph isomorphisms $\varphi_{1}: G_{2} \rightarrow \Omega\left(\mathcal{F}_{1}^{*}\right)$ and $\varphi_{2}: G_{1} \rightarrow \Omega\left(\mathcal{F}_{2}^{*}\right)$, where $\mathcal{F}_{i}^{*}:=\left\{V\left(G_{i}\right) \backslash S \mid S \in \mathcal{F}_{i}\right\}$ for $i=1$, 2 ;
(ii) for $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right), u \in \varphi_{1}(v)$ if and only if $v \notin \varphi_{2}(u)$.

Before proving the theorem, let us see an example. Let

$$
\begin{aligned}
& \mathcal{F}_{1}=\left\{\left\{u_{1}, u_{2}, u_{3}\right\},\left\{u_{1}, u_{2}, u_{3}\right\},\left\{u_{4}, u_{5}\right\},\left\{u_{4}, u_{5}\right\}\right\}, \\
& \mathcal{F}_{2}=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{2}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{4}\right\}\right\} .
\end{aligned}
$$

Then $\mathscr{F}_{1}$ and $\mathscr{F}_{2}$ are edge clique covers of $G_{1}:=K_{3} \cup K_{2}$ and $G_{2}:=K_{2} \cup K_{2}$, respectively, and we have $\mathcal{F}_{1}^{*}=\mathcal{F}_{1}$ and $\mathcal{F}_{2}^{*}=$ $\left(\mathcal{F}_{2}-\left\{\left\{v_{1}, v_{2}\right\}\right\}\right) \cup\left\{\left\{v_{3}, v_{4}\right\}\right\}$. We define maps $\varphi_{1}$ from $V\left(G_{2}\right)$ to $\mathcal{F}_{1}^{*}$ and $\varphi_{2}$ from $V\left(G_{1}\right)$ to $\mathcal{F}_{2}^{*}$ by $\varphi_{1}\left(v_{1}\right)=\varphi_{1}\left(v_{2}\right)=\left\{u_{4}, u_{5}\right\}$; $\varphi_{1}\left(v_{3}\right)=\varphi_{1}\left(v_{4}\right)=\left\{u_{1}, u_{2}, u_{3}\right\} ; \varphi_{2}\left(u_{1}\right)=\varphi_{2}\left(u_{2}\right)=\varphi_{2}\left(u_{3}\right)=\left\{v_{1}, v_{2}\right\} ; \varphi_{2}\left(u_{4}\right)=\varphi_{2}\left(u_{5}\right)=\left\{v_{3}, v_{4}\right\}$. It is easy to check that $\mathcal{F}_{1}$ and $\mathscr{F}_{2}$ satisfy conditions (i) and (ii) of Theorem 2.1.

Lemma 2.2. Let $G_{1}$ and $G_{2}$ be graphs. Let $D$ be an orientation of a complete bipartite graph with bipartition $\left(V\left(G_{1}\right), V\left(G_{2}\right)\right)$ such that the competition graph of $D$ is $G_{1} \cup G_{2}$. Then, the family $\left\{N_{D}^{-}(v) \mid v \in V\left(G_{2}\right)\right\}$ is an edge clique cover of $G_{1}$, and the family $\left\{N_{D}^{-}(u) \mid u \in V\left(G_{1}\right)\right\}$ is an edge clique cover of $G_{2}$.

# https://daneshyari.com/en/article/417930 

Download Persian Version:
https://daneshyari.com/article/417930

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail addresses: srkim@snu.ac.kr (S.-R. Kim), jungyeunlee@gmail.com (J.Y. Lee), borampark@ajou.ac.kr (B. Park), sano@cs.tsukuba.ac.jp (Y. Sano).

